Suppr超能文献

用于具有高热稳定性、大电子迁移率和优异n型掺杂能力的通用电子传输材料的1,10-菲咯啉衍生物中的氢键调制

Hydrogen bond modulation in 1,10-phenanthroline derivatives for versatile electron transport materials with high thermal stability, large electron mobility and excellent n-doping ability.

作者信息

Bin Zhengyang, Shi Diyuan, Su Rongchuan, Han Weiguo, Zhang Dongdong, Duan Lian

机构信息

Key Laboratory of Organic Optoelectronics and Department of Chemistry, Tsinghua University, Beijing 100084, China; College of Chemistry, Sichuan University, Chengdu 610064, China.

Key Laboratory of Organic Optoelectronics and Department of Chemistry, Tsinghua University, Beijing 100084, China.

出版信息

Sci Bull (Beijing). 2020 Jan 30;65(2):153-160. doi: 10.1016/j.scib.2019.11.005. Epub 2019 Nov 6.

Abstract

4,7-Bisphenyl-1,10-phenanthroline (BPhen) is a promising electron transport material (ETM) and has been widely used in organic light-emitting diodes (OLEDs) because of the large electron mobility and easy fabrication process. However, its low glass transition temperature would lead to poor device stability. In the past decades, various attempts have been carried out to improve its thermal stability though always be accomplished by the reduced electron mobility. Here, we present a molecular engineering to modulate the properties of BPhen, and through which, a versatile BPhen derivative (4,7-bis(naphthalene-β-yl)-1,10-phenanthroline, β-BNPhen) with high thermal stability (glass transition temperature = 111.9 °C), large electron mobility (7.8 × 10 cm/(V s) under an electrical field of 4.5 × 10 V/cm) and excellent n-doping ability with an air-stable metal of Ag is developed and used as multifunctional layers to improve the efficiency and enhance the stability of OLEDs. This work elucidates the great importance of our molecular engineering methodology and device structure optimization strategy, unlocking the potential of 1,10-phenanthroline derivatives towards practical applications.

摘要

4,7-二苯基-1,10-菲咯啉(BPhen)是一种很有前景的电子传输材料(ETM),由于其电子迁移率高且制备工艺简单,已被广泛应用于有机发光二极管(OLED)中。然而,其较低的玻璃化转变温度会导致器件稳定性较差。在过去几十年里,人们进行了各种尝试来提高其热稳定性,但总是以降低电子迁移率为代价。在此,我们提出一种分子工程方法来调控BPhen的性能,并据此开发出一种具有高热稳定性(玻璃化转变温度 = 111.9 °C)、大电子迁移率(在4.5×10 V/cm的电场下为7.8×10 cm/(V s))以及与空气稳定的金属银具有优异n型掺杂能力的通用BPhen衍生物(4,7-双(萘-β-基)-1,10-菲咯啉,β-BNPhen),并将其用作多功能层来提高OLED的效率和增强稳定性。这项工作阐明了我们的分子工程方法和器件结构优化策略的重要性,为1,10-菲咯啉衍生物在实际应用中释放了潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验