Hu Zhiquan, He Qiu, Liu Ziang, Liu Xiong, Qin Mingsheng, Wen Bo, Shi Wenchao, Zhao Yan, Li Qi, Mai Liqiang
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
Sci Bull (Beijing). 2020 Jul 30;65(14):1154-1162. doi: 10.1016/j.scib.2020.04.011. Epub 2020 Apr 9.
Niobium pentoxide (NbO) has attracted great attention as an anode for lithium-ion battery, which is attributed to the high-rate and good stability performances. In this work, TT-, T-, M-, and H-NbO microspheres were synthesized by a facile one-step thermal oxidation method. Ion and electron transport properties of NbO with different phases were investigated by both electrochemical analyses and density functional theoretical calculations. Without nanostructuring and carbon modification, the tetragonal NbO (M-NbO) displays preferable rate capability (121 mAh g at 5 A g), enhanced reversible capacity (163 mAh g at 0.2 A g) and better cycling stability (82.3% capacity retention after 1000 cycles) when compared with TT-, T-, and H-NbO. Electrochemical analyses further reveal the diffusion-controlled Li intercalation kinetics and in-situ X-ray diffraction analysis indicates superior structural stability upon Li intercalation/deintercalation. Benefiting from the intrinsic fast ion/electron transport, a high areal capacity of 2.24 mAh cm is obtained even at an ultrahigh mass loading of 22.51 mg cm. This work can promote the development of NbO materials for high areal capacity and stable lithium storage towards practical applications.
五氧化二铌(NbO)作为锂离子电池的阳极材料备受关注,这归因于其高倍率性能和良好的稳定性。在本工作中,通过简便的一步热氧化法合成了TT-、T-、M-和H-NbO微球。采用电化学分析和密度泛函理论计算研究了不同相NbO的离子和电子传输特性。在没有纳米结构和碳修饰的情况下,与TT-、T-和H-NbO相比,四方相NbO(M-NbO)表现出更优的倍率性能(5 A g时为121 mAh g)、更高的可逆容量(0.2 A g时为163 mAh g)和更好的循环稳定性(1000次循环后容量保持率为82.3%)。电化学分析进一步揭示了扩散控制的锂嵌入动力学,原位X射线衍射分析表明锂嵌入/脱嵌时具有优异的结构稳定性。得益于其固有的快速离子/电子传输特性,即使在22.51 mg cm的超高质量负载下,仍可获得2.24 mAh cm的高面积容量。这项工作有助于推动NbO材料在高面积容量和稳定锂存储方面的发展,以实现实际应用。