Suppr超能文献

源自纤维素物质的三维交联铌氧化物多晶型物:锂存储机制的见解

Three-Dimensional Cross-Linked NbO Polymorphs Derived from Cellulose Substances: Insights into the Mechanisms of Lithium Storage.

作者信息

Yang Ming, Li Shun, Huang Jianguo

机构信息

Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China.

出版信息

ACS Appl Mater Interfaces. 2021 Aug 25;13(33):39501-39512. doi: 10.1021/acsami.1c11720. Epub 2021 Aug 15.

Abstract

Niobium pentoxide (NbO)-based materials have been regarded as promising anodic materials for lithium-ion batteries due to their abundant crystalline phases and stable and safe lithium storage performances. However, there is a lack of systematic studies of the relationship among the crystal structures, electrochemical characteristics, and lithium storage mechanisms for the various NbO polymorphs. Herein, pure pseudohexagonal NbO (TT-NbO), orthorhombic NbO (T-NbO), tetragonal NbO (M-NbO), and monoclinic NbO (H-NbO) with three-dimensional interconnected structures are reported, which were synthesized a hydrothermal method using the commercial filter paper as the structural template followed by specific annealing processes. Impressively, the TT- and T-NbO species both possess bronze-like phases with "room and pillar" structures, while M- and H-NbO ones are both in the Wadsley-Roth phases with crystallographic shear structures. Among the pristine NbO materials, H-NbO exhibits the highest initial specific capacity (270 mA h g), while T-NbO performs with the lowest (197 mA h g) at 0.02 A g, meaning that crystallographic shear structures provide more lithium storage sites. TT-NbO realizes the best rate capability (207 mA h g at 0.02 A g and 103 mA h g at 4.0 A g), indicating that the "room and pillar" crystal structures favor fast lithium storage. Electrochemical analyses reveal that the TT- and T-NbO phases with "room and pillar" crystal structures utilize a pseudocapacitive intercalation mechanism, while the M- and H-NbO phases with the Wadsley-Roth shear structures follow a typical battery-type intercalation mechanism. A fresh insight into the further understanding of the intercalation pseudocapacitance on the basis of the unit cells of the electrode materials and a meaningful guidance for crystalline structural design/construction of the electrode materials for the next-generation LIBs are thus provided.

摘要

五氧化二铌(NbO)基材料因其丰富的晶相以及稳定、安全的储锂性能,被视为有前景的锂离子电池阳极材料。然而,对于各种NbO多晶型物的晶体结构、电化学特性和储锂机制之间的关系,缺乏系统性研究。在此,报道了具有三维互连结构的纯假六方NbO(TT-NbO)、正交晶系NbO(T-NbO)、四方晶系NbO(M-NbO)和单斜晶系NbO(H-NbO),它们是采用水热法,以商用滤纸为结构模板,随后经过特定退火工艺合成的。令人印象深刻的是,TT-NbO和T-NbO物种均具有类似青铜的“室柱”结构相,而M-NbO和H-NbO则均处于具有晶体学剪切结构的瓦兹利-罗斯相。在原始NbO材料中,H-NbO在0.02 A g时表现出最高的初始比容量(270 mA h g),而T-NbO的最低(197 mA h g),这意味着晶体学剪切结构提供了更多的储锂位点。TT-NbO实现了最佳的倍率性能(0.02 A g时为207 mA h g,4.0 A g时为103 mA h g),表明“室柱”晶体结构有利于快速储锂。电化学分析表明,具有“室柱 ”晶体结构的TT-NbO和T-NbO相采用赝电容嵌入机制,而具有瓦兹利-罗斯剪切结构的M-NbO和H-NbO相则遵循典型的电池型嵌入机制。从而为基于电极材料晶胞进一步理解嵌入赝电容提供了新的见解,并为下一代锂离子电池电极材料的晶体结构设计/构建提供了有意义的指导。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验