Yang Ming, Li Shun, Huang Jianguo
Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China.
ACS Appl Mater Interfaces. 2021 Aug 25;13(33):39501-39512. doi: 10.1021/acsami.1c11720. Epub 2021 Aug 15.
Niobium pentoxide (NbO)-based materials have been regarded as promising anodic materials for lithium-ion batteries due to their abundant crystalline phases and stable and safe lithium storage performances. However, there is a lack of systematic studies of the relationship among the crystal structures, electrochemical characteristics, and lithium storage mechanisms for the various NbO polymorphs. Herein, pure pseudohexagonal NbO (TT-NbO), orthorhombic NbO (T-NbO), tetragonal NbO (M-NbO), and monoclinic NbO (H-NbO) with three-dimensional interconnected structures are reported, which were synthesized a hydrothermal method using the commercial filter paper as the structural template followed by specific annealing processes. Impressively, the TT- and T-NbO species both possess bronze-like phases with "room and pillar" structures, while M- and H-NbO ones are both in the Wadsley-Roth phases with crystallographic shear structures. Among the pristine NbO materials, H-NbO exhibits the highest initial specific capacity (270 mA h g), while T-NbO performs with the lowest (197 mA h g) at 0.02 A g, meaning that crystallographic shear structures provide more lithium storage sites. TT-NbO realizes the best rate capability (207 mA h g at 0.02 A g and 103 mA h g at 4.0 A g), indicating that the "room and pillar" crystal structures favor fast lithium storage. Electrochemical analyses reveal that the TT- and T-NbO phases with "room and pillar" crystal structures utilize a pseudocapacitive intercalation mechanism, while the M- and H-NbO phases with the Wadsley-Roth shear structures follow a typical battery-type intercalation mechanism. A fresh insight into the further understanding of the intercalation pseudocapacitance on the basis of the unit cells of the electrode materials and a meaningful guidance for crystalline structural design/construction of the electrode materials for the next-generation LIBs are thus provided.
五氧化二铌(NbO)基材料因其丰富的晶相以及稳定、安全的储锂性能,被视为有前景的锂离子电池阳极材料。然而,对于各种NbO多晶型物的晶体结构、电化学特性和储锂机制之间的关系,缺乏系统性研究。在此,报道了具有三维互连结构的纯假六方NbO(TT-NbO)、正交晶系NbO(T-NbO)、四方晶系NbO(M-NbO)和单斜晶系NbO(H-NbO),它们是采用水热法,以商用滤纸为结构模板,随后经过特定退火工艺合成的。令人印象深刻的是,TT-NbO和T-NbO物种均具有类似青铜的“室柱”结构相,而M-NbO和H-NbO则均处于具有晶体学剪切结构的瓦兹利-罗斯相。在原始NbO材料中,H-NbO在0.02 A g时表现出最高的初始比容量(270 mA h g),而T-NbO的最低(197 mA h g),这意味着晶体学剪切结构提供了更多的储锂位点。TT-NbO实现了最佳的倍率性能(0.02 A g时为207 mA h g,4.0 A g时为103 mA h g),表明“室柱”晶体结构有利于快速储锂。电化学分析表明,具有“室柱 ”晶体结构的TT-NbO和T-NbO相采用赝电容嵌入机制,而具有瓦兹利-罗斯剪切结构的M-NbO和H-NbO相则遵循典型的电池型嵌入机制。从而为基于电极材料晶胞进一步理解嵌入赝电容提供了新的见解,并为下一代锂离子电池电极材料的晶体结构设计/构建提供了有意义的指导。