Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
Genetics. 2023 Apr 6;223(4). doi: 10.1093/genetics/iyad006.
Nuclear actin has been implicated in dynamic chromatin rearrangements in diverse eukaryotes. In mammalian cells, it is required to reposition double-strand DNA breaks to enable homologous recombination repair and to enhance transcription by facilitating RNA Pol II recruitment to gene promoters. In the yeast Saccharomyces cerevisiae, nuclear actin modulates interphase chromosome dynamics and is required to reposition the induced INO1 gene to the nuclear periphery. Here, we have investigated the role of actin in driving intergenic interactions between Heat Shock Factor 1 (Hsf1)-regulated Heat Shock Protein (HSP) genes in budding yeast. These genes, dispersed on multiple chromosomes, dramatically reposition following exposure of cells to acute thermal stress, leading to their clustering within dynamic biomolecular condensates. Using an auxin-induced degradation strategy, we found that conditional depletion of nucleators of either linear or branched F-actin (Bni1/Bnr1 and Arp2, respectively) had little or no effect on heat shock-induced HSP gene coalescence or transcription. In addition, we found that pretreatment of cells with latrunculin A, an inhibitor of both filamentous and monomeric actin, failed to affect intergenic interactions between activated HSP genes and their heat shock-induced intragenic looping and folding. Moreover, latrunculin A pretreatment had little effect on HSP gene expression at either RNA or protein levels. In notable contrast, we confirmed that repositioning of activated INO1 to the nuclear periphery and its proper expression do require actin. Collectively, our work suggests that transcriptional activation and 3D genome restructuring of thermally induced, Hsf1-regulated genes can occur in the absence of actin.
核肌动蛋白已被牵连到不同真核生物中动态染色质重排。在哺乳动物细胞中,它需要重新定位双链 DNA 断裂,以实现同源重组修复,并通过促进 RNA Pol II 募集到基因启动子来增强转录。在酵母酿酒酵母中,核肌动蛋白调节有丝分裂期染色体动力学,并需要将诱导的 INO1 基因重新定位到核周缘。在这里,我们研究了肌动蛋白在驱动酵母中热休克因子 1 (Hsf1) 调节的热休克蛋白 (HSP) 基因之间的基因间相互作用中的作用。这些基因分散在多个染色体上,在细胞暴露于急性热应激后会显著重新定位,导致它们在动态生物分子凝聚物内聚集。使用植物生长素诱导的降解策略,我们发现线性或分支 F-肌动蛋白的成核因子(Bni1/Bnr1 和 Arp2)的条件缺失对热休克诱导的 HSP 基因凝聚或转录几乎没有影响。此外,我们发现细胞用 latrunculin A 预处理,一种丝状和单体肌动蛋白的抑制剂,不能影响激活的 HSP 基因之间的基因间相互作用及其热休克诱导的基因内环和折叠。此外,latrunculin A 预处理对 HSP 基因在 RNA 或蛋白质水平的表达几乎没有影响。值得注意的是,我们证实激活的 INO1 向核周缘的重新定位及其适当表达确实需要肌动蛋白。总的来说,我们的工作表明,热诱导的、Hsf1 调节的基因的转录激活和 3D 基因组重排可以在没有肌动蛋白的情况下发生。