Suppr超能文献

热休克反应作为凝聚物级联反应。

The Heat Shock Response as a Condensate Cascade.

机构信息

Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, United States.

Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, United States; Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, United States; Center for Physics of Evolving Systems, University of Chicago, Chicago, IL, United States.

出版信息

J Mol Biol. 2024 Jul 15;436(14):168642. doi: 10.1016/j.jmb.2024.168642. Epub 2024 Jun 5.

Abstract

The heat shock response (HSR) is a gene regulatory program controlling expression of molecular chaperones implicated in aging, cancer, and neurodegenerative disease. Long presumed to be activated by toxic protein aggregates, recent work suggests a new functional paradigm for the HSR in yeast. Rather than toxic aggregates, adaptive biomolecular condensates comprised of orphan ribosomal proteins (oRP) and stress granule components have been shown to be physiological chaperone clients. By titrating away the chaperones Sis1 and Hsp70 from the transcription factor Hsf1, these condensates activate the HSR. Upon release from Hsp70, Hsf1 forms spatially distinct transcriptional condensates that drive high expression of HSR genes. In this manner, the negative feedback loop controlling HSR activity - in which Hsf1 induces Hsp70 expression and Hsp70 represses Hsf1 activity - is embedded in the biophysics of the system. By analogy to phosphorylation cascades that transmit information via the dynamic activity of kinases, we propose that the HSR is organized as a condensate cascade that transmits information via the localized activity of molecular chaperones.

摘要

热休克反应 (HSR) 是一种基因调控程序,控制着分子伴侣的表达,这些分子伴侣与衰老、癌症和神经退行性疾病有关。长期以来,人们一直认为它是由有毒的蛋白质聚集体激活的,但最近的研究工作表明,HSR 在酵母中存在一个新的功能范例。与其说是有毒的聚集体,由孤儿核糖体蛋白 (oRP) 和应激颗粒成分组成的适应性生物分子凝聚物被证明是生理伴侣的客户。通过从转录因子 Hsf1 中滴定掉伴侣蛋白 Sis1 和 Hsp70,这些凝聚物激活了 HSR。从 Hsp70 释放后,Hsf1 形成空间上不同的转录凝聚物,从而驱动 HSR 基因的高表达。通过这种方式,控制 HSR 活性的负反馈循环——其中 Hsf1 诱导 Hsp70 表达,而 Hsp70 抑制 Hsf1 活性——嵌入到系统的生物物理学中。通过类比于通过激酶的动态活性传递信息的磷酸化级联,我们提出 HSR 被组织为一个凝聚物级联,通过分子伴侣的局部活性传递信息。

相似文献

1
The Heat Shock Response as a Condensate Cascade.
J Mol Biol. 2024 Jul 15;436(14):168642. doi: 10.1016/j.jmb.2024.168642. Epub 2024 Jun 5.
2
Hsp70 chaperones, Ssa1 and Ssa2, limit poly(A) binding protein aggregation.
Mol Biol Cell. 2025 Jun 1;36(6):ar66. doi: 10.1091/mbc.E25-01-0027. Epub 2025 Apr 9.
4
Hsf1 on a leash - controlling the heat shock response by chaperone titration.
Exp Cell Res. 2020 Nov 1;396(1):112246. doi: 10.1016/j.yexcr.2020.112246. Epub 2020 Aug 27.
5
Regulation of the Hsf1-dependent transcriptome via conserved bipartite contacts with Hsp70 promotes survival in yeast.
J Biol Chem. 2019 Aug 9;294(32):12191-12202. doi: 10.1074/jbc.RA119.008822. Epub 2019 Jun 25.
6
Subcellular localization of the J-protein Sis1 regulates the heat shock response.
J Cell Biol. 2021 Jan 4;220(1). doi: 10.1083/jcb.202005165.
7
SUMOylation is not a prerequisite for HSF1's role in stress protection and transactivation.
Sci Rep. 2025 Jul 5;15(1):24077. doi: 10.1038/s41598-025-08735-3.
9
Chaperones directly and efficiently disperse stress-triggered biomolecular condensates.
Mol Cell. 2022 Feb 17;82(4):741-755.e11. doi: 10.1016/j.molcel.2022.01.005. Epub 2022 Feb 10.

引用本文的文献

3
A guide to heat shock factors as multifunctional transcriptional regulators.
FEBS J. 2025 Aug;292(16):4133-4155. doi: 10.1111/febs.70139. Epub 2025 Jun 2.
4
Effects of Climate Change on the Immune System: A Narrative Review.
Health Sci Rep. 2025 Apr 18;8(4):e70627. doi: 10.1002/hsr2.70627. eCollection 2025 Apr.
5
Emergent 3D genome reorganization from the stepwise assembly of transcriptional condensates.
bioRxiv. 2025 Feb 27:2025.02.23.639564. doi: 10.1101/2025.02.23.639564.
6
Emerging regulatory mechanisms and functions of biomolecular condensates: implications for therapeutic targets.
Signal Transduct Target Ther. 2025 Jan 6;10(1):4. doi: 10.1038/s41392-024-02070-1.
7
When "loss-of-function" means proteostasis burden: Thinking again about coding DNA variants.
Am J Hum Genet. 2025 Jan 2;112(1):3-10. doi: 10.1016/j.ajhg.2024.12.002.
8
When HSFs bring the heat-mapping the transcriptional circuitries of HSF-type regulators in .
mSphere. 2025 Jan 28;10(1):e0064423. doi: 10.1128/msphere.00644-23. Epub 2024 Dec 20.
9
Preserve or destroy: Orphan protein proteostasis and the heat shock response.
J Cell Biol. 2024 Dec 2;223(12). doi: 10.1083/jcb.202407123. Epub 2024 Nov 15.
10
Redox regulation of proteostasis.
J Biol Chem. 2024 Dec;300(12):107977. doi: 10.1016/j.jbc.2024.107977. Epub 2024 Nov 8.

本文引用的文献

1
An adaptive biomolecular condensation response is conserved across environmentally divergent species.
Nat Commun. 2024 Apr 11;15(1):3127. doi: 10.1038/s41467-024-47355-9.
2
Adaptive preservation of orphan ribosomal proteins in chaperone-dispersed condensates.
Nat Cell Biol. 2023 Nov;25(11):1691-1703. doi: 10.1038/s41556-023-01253-2. Epub 2023 Oct 16.
3
A cytosolic surveillance mechanism activates the mitochondrial UPR.
Nature. 2023 Jun;618(7966):849-854. doi: 10.1038/s41586-023-06142-0. Epub 2023 Jun 7.
5
Nuclear and cytoplasmic spatial protein quality control is coordinated by nuclear-vacuolar junctions and perinuclear ESCRT.
Nat Cell Biol. 2023 May;25(5):699-713. doi: 10.1038/s41556-023-01128-6. Epub 2023 Apr 20.
6
Oxaliplatin disrupts nucleolar function through biophysical disintegration.
Cell Rep. 2022 Nov 8;41(6):111629. doi: 10.1016/j.celrep.2022.111629.
7
Inducible transcriptional condensates drive 3D genome reorganization in the heat shock response.
Mol Cell. 2022 Nov 17;82(22):4386-4399.e7. doi: 10.1016/j.molcel.2022.10.013. Epub 2022 Nov 2.
8
Formation of toxic oligomers of polyQ-expanded Huntingtin by prion-mediated cross-seeding.
Mol Cell. 2022 Nov 17;82(22):4290-4306.e11. doi: 10.1016/j.molcel.2022.09.031. Epub 2022 Oct 21.
9
Using reporters of different misfolded proteins reveals differential strategies in processing protein aggregates.
J Biol Chem. 2022 Nov;298(11):102476. doi: 10.1016/j.jbc.2022.102476. Epub 2022 Sep 9.
10
Stressful steps: Progress and challenges in understanding stress-induced mRNA condensation and accumulation in stress granules.
Mol Cell. 2022 Jul 21;82(14):2544-2556. doi: 10.1016/j.molcel.2022.05.014. Epub 2022 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验