Suppr超能文献

基于超薄钯纳米线的纸基氢气传感器。

Paper-Based Hydrogen Sensors Using Ultrathin Palladium Nanowires.

机构信息

Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York14260, United States.

RENEW Institute, University at Buffalo (SUNY), Buffalo, New York14260, United States.

出版信息

ACS Appl Mater Interfaces. 2023 Feb 1;15(4):5439-5448. doi: 10.1021/acsami.2c18825. Epub 2023 Jan 20.

Abstract

Hydrogen (H), as a chemical energy carrier, is a cleaner alternative to conventional fossil fuels with zero carbon emission and high energy density. The development of fast, low-cost, and sensitive H detection systems is important for the widespread adoption of H technologies. Paper is an environment-friendly, porous, and flexible material with great potential for use in sustainable electronics. Here, we report a paper-based sensor for room-temperature H detection using ultrathin palladium nanowires (PdNWs). To elucidate the sensing mechanism, we compare the performance of polycrystalline and quasi-single-crystalline PdNWs. The polycrystalline PdNWs showed a response of 4.3% to 1 vol % H with response and recovery times of 4.9 and 10.6 s, while quasi-single-crystalline PdNWs showed a response of 8% to 1 vol % H with response and recovery times of 9.3 and 13.0 s, respectively. The polycrystalline PdNWs show excellent selectivity, stability, and sensitivity, with a limit of detection of 10 ppm H in air. The fast response of ultrathin polycrystalline PdNW paper-based sensors arises from the synergistic effects of their ultrasmall diameter, high-index surface facets, strain-coupled grain boundaries, and porous paper substrate. This paper-based sensor is one of the fastest chemiresistive H sensors reported and is potentially orders of magnitude less expensive than current state-of-the-art H-sensing solutions. This brings low-cost, room-temperature chemiresistive H sensing closer to the performance of ultrafast optical sensors and high-temperature metal oxide-based sensors.

摘要

氢气(H)作为一种化学能量载体,是一种比传统化石燃料更清洁的替代品,它零碳排放,能量密度高。开发快速、低成本、高灵敏度的 H 检测系统对于广泛采用 H 技术至关重要。纸是一种环保、多孔且灵活的材料,在可持续电子领域具有很大的应用潜力。在这里,我们报告了一种使用超薄钯纳米线(PdNWs)的室温 H 检测纸基传感器。为了阐明传感机制,我们比较了多晶和准单晶 PdNWs 的性能。多晶 PdNWs 对 1 体积%的 H 表现出 4.3%的响应,响应和恢复时间分别为 4.9 和 10.6 s,而准单晶 PdNWs 对 1 体积%的 H 表现出 8%的响应,响应和恢复时间分别为 9.3 和 13.0 s。多晶 PdNWs 表现出优异的选择性、稳定性和灵敏度,空气中 H 的检测限低至 10 ppm。超薄多晶 PdNW 纸基传感器的快速响应源于其超小直径、高指数表面晶面、应变耦合晶界和多孔纸基底的协同效应。这种基于纸的传感器是报道的最快的化学电阻 H 传感器之一,其成本比目前最先进的 H 传感解决方案低几个数量级。这使得低成本、室温下的化学电阻 H 传感更接近超快光学传感器和高温金属氧化物基传感器的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验