Suppr超能文献

拓扑速度极限。

Topological Speed Limit.

机构信息

Department of Physics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.

出版信息

Phys Rev Lett. 2023 Jan 6;130(1):010402. doi: 10.1103/PhysRevLett.130.010402.

Abstract

Any physical system evolves at a finite speed that is constrained not only by the energetic cost but also by the topological structure of the underlying dynamics. In this Letter, by considering such structural information, we derive a unified topological speed limit for the evolution of physical states using an optimal transport approach. We prove that the minimum time required for changing states is lower bounded by the discrete Wasserstein distance, which encodes the topological information of the system, and the time-averaged velocity. The bound obtained is tight and applicable to a wide range of dynamics, from deterministic to stochastic, and classical to quantum systems. In addition, the bound provides insight into the design principles of the optimal process that attains the maximum speed. We demonstrate the application of our results to chemical reaction networks and interacting many-body quantum systems.

摘要

任何物理系统的演化速度都是有限的,这种限制不仅来自于能量成本,还来自于基础动力学的拓扑结构。在这封信中,通过考虑这种结构信息,我们使用最优传输方法为物理状态的演化推导了一个统一的拓扑速度限制。我们证明,改变状态所需的最小时间下界由离散的 Wasserstein 距离给出,它编码了系统的拓扑信息和时间平均速度。所得到的界是紧的,适用于从确定性到随机的、经典到量子系统的广泛动力学。此外,该界为达到最大速度的最优过程的设计原则提供了深入的了解。我们展示了我们的结果在化学反应网络和相互作用的多体量子系统中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验