Zhu Zitian, Gao Lei, Bao Zehang, Xiang Liang, Song Zixuan, Xu Shibo, Wang Ke, Chen Jiachen, Jin Feitong, Zhu Xuhao, Gao Yu, Wu Yaozu, Zhang Chuanyu, Wang Ning, Zou Yiren, Tan Ziqi, Zhang Aosai, Cui Zhengyi, Shen Fanhao, Zhong Jiarun, Li Tingting, Deng Jinfeng, Zhang Xu, Dong Hang, Zhang Pengfei, Wang Zhen, Song Chao, Cheng Chen, Guo Qiujiang, Li Hekang, Wang H, Lin Hai-Qing, Mondaini Rubem
School of Physics, Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, Zhejiang University, Hangzhou, 310027, China.
ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
Nat Commun. 2025 Feb 1;16(1):1255. doi: 10.1038/s41467-025-56451-3.
Tracking the time evolution of a quantum state allows one to verify the thermalization rate or the propagation speed of correlations in generic quantum systems. Inspired by the energy-time uncertainty principle, bounds have been demonstrated on the maximal speed at which a quantum state can change, resulting in immediate and practical tasks. Based on a programmable superconducting quantum processor, we test the dynamics of various emulated quantum mechanical systems encompassing single- and many-body states. We show that one can test the known quantum speed limits and that modifying a single Hamiltonian parameter allows the observation of the crossover of the different bounds on the dynamics. We also unveil the observation of minimal quantum speed limits in addition to more common maximal ones, i.e., the lowest rate of change of a unitarily evolved quantum state. Our results show a comprehensive experimental characterization of quantum speed limits and enhance the understanding for their subsequent study in engineered non-unitary conditions.
追踪量子态的时间演化能够让人们验证一般量子系统中的热化速率或关联的传播速度。受能量-时间不确定性原理的启发,人们已经证明了量子态能够变化的最大速度存在限制,这带来了直接且实际的任务。基于一个可编程超导量子处理器,我们测试了各种模拟量子力学系统的动力学,这些系统涵盖单粒子和多粒子态。我们表明人们能够测试已知的量子速度极限,并且修改单个哈密顿量参数能够观察到动力学上不同限制的交叉。除了更常见的最大量子速度极限之外,我们还揭示了对最小量子速度极限的观测,即幺正演化量子态的最低变化速率。我们的结果展示了量子速度极限的全面实验表征,并增进了对其在工程非幺正条件下后续研究的理解。