Suppr超能文献

胞外聚合物和碳层对 Fe@C 在难降解废水厌氧处理中电子利用的协同作用。

Synergistic effect of extracellular polymeric substances and carbon layer on electron utilization of Fe@C during anaerobic treatment of refractory wastewater.

机构信息

Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore.

Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.

出版信息

Water Res. 2023 Mar 1;231:119609. doi: 10.1016/j.watres.2023.119609. Epub 2023 Jan 13.

Abstract

Nano zero-valent iron (NZVI) has been widely used to improve refractory wastewater treatment. However, the rapid dissolution of NZVI causes a waste of resources and an unstable bioaugmentation. Herein, to verify the essential role of slow release of NZVI on biological systems, a core-shell structured Fe@C composite was developed to demonstrate the long-term feasibility of Fe@C for enhancing azo dye biodegradation in comparison to a mixture of NZVI and carbon powder (Fe+C). The 150 days of long-term reactor operation showed that, although both Fe@C and Fe+C enhanced azo dye degradation, the former achieved a better performance than the latter. The strengthening effect of Fe@C was also more durable and stable than Fe+C. It may be due to the fact that the carbon layer of Fe@C could interact with extracellular polymeric substances (EPS) through physical adsorption and chemical bonding to form a stable buffer to regulate NZVI dissolution. The buffer layer could not only regulate the attack of H on NZVI to reduce its dissolution rate but also complex released Fe and neutralize OH to alleviate the passivation layer formed on the NZVI surface. Moreover, microbial community analysis indicated that both Fe@C and Fe+C increased the abundance of fermentative bacteria (e.g., Bacteroidetes_vadinHA17, Propionicicella) and methanogens (e.g., Methanobacterium), but only Fe@C promoted the growth of azo dye degraders (e.g., Clostridium, Geobacter). Metatranscriptomic analysis further revealed that only Fe@C could substantially stimulate the expression of azoreductase and redox mediator (e.g., riboflavin, ubiquinone) biosynthesis involved in the extracellular degradation of azo dye. This work provides novel insights into the bioaugmentation of Fe@C for refractory wastewater treatment.

摘要

纳米零价铁 (NZVI) 已被广泛用于改善难处理废水的处理。然而,NZVI 的快速溶解导致了资源的浪费和生物增强的不稳定。在此,为了验证 NZVI 缓慢释放对生物系统的重要作用,开发了一种核壳结构的 Fe@C 复合材料,以证明与 NZVI 和碳粉混合物(Fe+C)相比,Fe@C 用于增强偶氮染料生物降解的长期可行性。150 天的长期反应器运行表明,尽管 Fe@C 和 Fe+C 都增强了偶氮染料的降解,但前者的性能优于后者。Fe@C 的强化效果也比 Fe+C 更持久和稳定。这可能是因为 Fe@C 的碳层可以通过物理吸附和化学结合与细胞外聚合物物质 (EPS) 相互作用,形成一个稳定的缓冲层来调节 NZVI 的溶解。缓冲层不仅可以调节 H 对 NZVI 的攻击,降低其溶解速率,还可以络合释放的 Fe 和中和 OH,缓解 NZVI 表面形成的钝化层。此外,微生物群落分析表明,Fe@C 和 Fe+C 都增加了发酵细菌(如 Bacteroidetes_vadinHA17、Propionicicella)和产甲烷菌(如 Methanobacterium)的丰度,但只有 Fe@C 促进了偶氮染料降解菌(如 Clostridium、Geobacter)的生长。宏转录组学分析进一步表明,只有 Fe@C 才能显著刺激参与偶氮染料胞外降解的偶氮还原酶和氧化还原介体(如核黄素、泛醌)生物合成的表达。这项工作为 Fe@C 用于难处理废水处理的生物增强提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验