Department of Physics, Wenzhou University, Wenzhou 325035, China.
Biomolecules. 2022 Dec 26;13(1):42. doi: 10.3390/biom13010042.
Liquid-liquid phase separation (LLPS) underlies the formation of membrane-free organelles in eukaryotic cells and plays an important role in the development of some diseases. The phase boundary of metastable liquid-liquid phase separation as well as the cloud point temperature of some globular proteins characterize the phase behavior of proteins and have been widely studied theoretically and experimentally. In the present study, we used a regression and classification neural network to deal with the phase behavior of lysozyme and bovine serum albumin (BSA). We predicted the cloud point temperature and solubility of a lysozyme solution containing sodium chloride by regression and the reentrant phase behavior of BSA in YCl solution containing a surfactant dodecyl dimethyl amine oxide (DDAO) by classification. Specifically, our network model is capable of predicting (a) the solubility of lysozyme in the range: pH 4.0-5.4, temperature 0-25 °C, and NaCl concentration 2-7% (/); (b) the cloud point temperature of lysozyme in the range: pH 4.0-4.8, NaCl concentration 2-7%, and lysozyme concentration 0-400 mg/mL; and (c) the phase behavior of BSA in the range: DDAO 1-60 mM, BSA 30-100 mg/mL, and YCl 1-20 mM. We experimentally tested the model at some prediction points with a high accuracy, which means that deep neural networks can be applicable in qualitative and quantitive analysis of liquid-liquid phase separation.
液液相分离(LLPS)是真核细胞中无膜细胞器形成的基础,并在一些疾病的发展中发挥重要作用。亚稳液液相分离的相界以及一些球状蛋白的浊点温度表征了蛋白质的相行为,已在理论和实验上得到了广泛研究。在本研究中,我们使用回归和分类神经网络来处理溶菌酶和牛血清白蛋白(BSA)的相行为。我们通过回归预测了含有氯化钠的溶菌酶溶液的浊点温度和溶解度,通过分类预测了含有表面活性剂十二烷基二甲基氧化胺(DDAO)的 YCl 溶液中 BSA 的重入相行为。具体来说,我们的网络模型能够预测:(a)pH 值为 4.0-5.4、温度为 0-25°C、NaCl 浓度为 2-7%的范围内溶菌酶的溶解度(/);(b)pH 值为 4.0-4.8、NaCl 浓度为 2-7%、溶菌酶浓度为 0-400mg/mL 的范围内溶菌酶的浊点温度;(c)DDAO 浓度为 1-60mM、BSA 浓度为 30-100mg/mL、YCl 浓度为 1-20mM 的范围内 BSA 的相行为。我们在一些预测点进行了实验验证,模型具有很高的准确性,这意味着深度神经网络可适用于液液相分离的定性和定量分析。