Suppr超能文献

深度学习用于鉴别轻链型与转甲状腺素蛋白型心脏淀粉样变的磁共振图像

Deep Learning to Classify AL versus ATTR Cardiac Amyloidosis MR Images.

作者信息

Germain Philippe, Vardazaryan Armine, Labani Aissam, Padoy Nicolas, Roy Catherine, El Ghannudi Soraya

机构信息

Department of Radiology, Nouvel Hopital Civil, University Hospital, 67091 Strasbourg, France.

ICube, University of Strasbourg, CNRS, 67000 Strasbourg, France.

出版信息

Biomedicines. 2023 Jan 12;11(1):193. doi: 10.3390/biomedicines11010193.

Abstract

The aim of this work was to compare the classification of cardiac MR-images of AL versus ATTR amyloidosis by neural networks and by experienced human readers. Cine-MR images and late gadolinium enhancement (LGE) images of 120 patients were studied (70 AL and 50 TTR). A VGG16 convolutional neural network (CNN) was trained with a 5-fold cross validation process, taking care to strictly distribute images of a given patient in either the training group or the test group. The analysis was performed at the patient level by averaging the predictions obtained for each image. The classification accuracy obtained between AL and ATTR amyloidosis was 0.750 for cine-CNN, 0.611 for Gado-CNN and between 0.617 and 0.675 for human readers. The corresponding AUC of the ROC curve was 0.839 for cine-CNN, 0.679 for gado-CNN (p < 0.004 vs. cine) and 0.714 for the best human reader (p < 0.007 vs. cine). Logistic regression with cine-CNN and gado-CNN, as well as analysis focused on the specific orientation plane, did not change the overall results. We conclude that cine-CNN leads to significantly better discrimination between AL and ATTR amyloidosis as compared to gado-CNN or human readers, but with lower performance than reported in studies where visual diagnosis is easy, and is currently suboptimal for clinical practice.

摘要

这项工作的目的是比较神经网络和有经验的专业人员对AL型与ATTR型淀粉样变性心肌病磁共振成像(MR)的分类。研究了120例患者的心脏电影磁共振成像(Cine-MR)和延迟钆增强(LGE)图像(70例AL型和50例TTR型)。使用VGG16卷积神经网络(CNN)进行5折交叉验证训练,注意将给定患者的图像严格分配到训练组或测试组。通过对每个图像的预测结果求平均值,在患者层面进行分析。Cine-CNN对AL型和ATTR型淀粉样变性心肌病的分类准确率为0.750,Gado-CNN为0.611,专业人员的准确率在0.617至0.675之间。Cine-CNN的ROC曲线相应AUC为0.839,Gado-CNN为0.679(与Cine-CNN相比,p < 0.004),最佳专业人员为0.714(与Cine-CNN相比,p < 0.007)。结合Cine-CNN和Gado-CNN的逻辑回归以及针对特定方位平面的分析,并未改变总体结果。我们得出结论,与Gado-CNN或专业人员相比,Cine-CNN对AL型和ATTR型淀粉样变性心肌病的鉴别能力明显更好,但性能低于视觉诊断容易的研究报告,目前在临床实践中并非最佳。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88ca/9855341/4193edf7fcfa/biomedicines-11-00193-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验