Suppr超能文献

基于复杂网络和多智能体仿真的云制造系统鲁棒性

Robustness of Cloud Manufacturing System Based on Complex Network and Multi-Agent Simulation.

作者信息

Zheng Xin, Zhang Xiaodong

机构信息

School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China.

出版信息

Entropy (Basel). 2022 Dec 27;25(1):45. doi: 10.3390/e25010045.

Abstract

Cloud manufacturing systems (CMSs) are networked, distributed and loosely coupled, so they face great uncertainty and risk. This paper combines the complex network model with multi-agent simulation in a novel approach to the robustness analysis of CMSs. Different evaluation metrics are chosen for the two models, and three different robustness attack strategies are proposed. To verify the effectiveness of the proposed method, a case study is then conducted on a cloud manufacturing project of a new energy vehicle. The results show that both the structural and process-based robustness of the system are lowest under the betweenness-based failure mode, indicating that resource nodes with large betweenness are most important to the robustness of the project. Therefore, the cloud manufacturing platform should focus on monitoring and managing these resources so that they can provide stable services. Under the individual server failure mode, system robustness varies greatly depending on the failure behavior of the service provider: Among the five service providers (S1-S5) given in the experimental group, the failure of Server 1 leads to a sharp decline in robustness, while the failure of Server 2 has little impact. This indicates that the CMS can protect its robustness by identifying key servers and strengthening its supervision of them to prevent them from exiting the platform.

摘要

云制造系统(CMSs)是网络化、分布式且松散耦合的,因此它们面临着巨大的不确定性和风险。本文将复杂网络模型与多智能体仿真相结合,以一种新颖的方法对云制造系统进行鲁棒性分析。为这两种模型选择了不同的评估指标,并提出了三种不同的鲁棒性攻击策略。为验证所提方法的有效性,随后对一个新能源汽车云制造项目进行了案例研究。结果表明,在基于介数的故障模式下,系统基于结构和过程的鲁棒性均最低,这表明具有大介数的资源节点对项目的鲁棒性最为重要。因此,云制造平台应着重监测和管理这些资源,以便它们能够提供稳定的服务。在单个服务器故障模式下,系统鲁棒性会因服务提供商的故障行为而有很大差异:在实验组给出的五个服务提供商(S1 - S5)中,服务器1的故障会导致鲁棒性急剧下降,而服务器2的故障影响较小。这表明云制造系统可以通过识别关键服务器并加强对它们的监管来保护其鲁棒性,防止它们退出平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e484/9857848/3963f39b76f0/entropy-25-00045-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验