Suppr超能文献

添加Zr和Er对新型Al-Mg-Zn-Er-Zr合金热压缩过程中微观组织演变的影响

Effect of Zr and Er Addition on the Microstructural Evolution of a Novel Al-Mg-Zn-Er-Zr Alloy during Hot Compression.

作者信息

Wu Minbao, Wei Wu, Zuo Rui, Wen Shengping, Shi Wei, Zhou Xiaorong, Wu Xiaolan, Gao Kunyuan, Huang Hui, Nie Zuoren

机构信息

Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China.

Institute of Corrosion Science and Technology, Guangzhou 510530, China.

出版信息

Materials (Basel). 2023 Jan 16;16(2):858. doi: 10.3390/ma16020858.

Abstract

The hot compression experiment of homogenized Al-5.2Mg-0.6Mn-0.29Zn-0.16Er-0.12Zr alloy was carried out by the Gleeble-3500 thermal simulation testing system. The deformation behavior in temperatures of 350500 ℃ and deformation rates of 0.0110 s was studied. The relationship between stress and strain rate and deformation temperature was analyzed. The constitutive equation of alloy high-temperature deformation was constructed by the Zener-Hollomon method, and the hot working diagram with the true strain of 0.2 and 0.5 was constructed according to the dynamic material model. The research results show that flow stress has a positive correlation with strain rate and a negative correlation with temperature. The steady flow stress during deformation can be described by a hyperbolic sinusoidal constitutive equation. Adding Er and Zr into Al-Mg alloy can not only refine grains and strengthen precipitation but also form a core-shell Al(Er, Zr) phase. In the deformation process, Al(Er, Zr) precipitates can pin dislocations and inhibit dynamic recrystallization (DRX). Dynamic recovery (DRV) is dominant during hot deformation. The mechanism of dynamic recovery is dislocation motion. At high temperatures, Al(Er, Zr) can also inhibit grain coarsening. The average hot deformation activation energy of the alloy is 203.7 kJ/mol. This high activation energy can be due to the pinning effect of Er and Zr precipitates. The processing map of the alloy was analyzed and combined with the observation of microstructure, the hot deformation instability zone of the alloy was determined, and the suitable process parameters for hot deformation were obtained, which were 450480 °C, and the strain rate is 0.010.09 s.

摘要

采用Gleeble-3500热模拟试验系统对均匀化处理后的Al-5.2Mg-0.6Mn-0.29Zn-0.16Er-0.12Zr合金进行了热压缩试验。研究了该合金在350500℃温度和0.0110s⁻¹应变速率下的变形行为。分析了应力与应变速率以及变形温度之间的关系。采用Zener-Hollomon方法建立了合金高温变形本构方程,并根据动态材料模型构建了真应变分别为0.2和0.5时的热加工图。研究结果表明:流变应力与应变速率呈正相关,与温度呈负相关。变形过程中的稳态流变应力可用双曲正弦本构方程描述。向Al-Mg合金中添加Er和Zr不仅可以细化晶粒、强化析出相,还能形成核壳结构的Al(Er,Zr)相。在变形过程中,Al(Er,Zr)析出相能够钉扎位错,抑制动态再结晶(DRX)。热变形过程中动态回复(DRV)起主导作用,动态回复机制为位错运动。在高温下,Al(Er,Zr)还能抑制晶粒粗化。该合金的平均热变形激活能为203.7kJ/mol,如此高的激活能可能归因于Er和Zr析出相的钉扎作用。分析了该合金的加工图,并结合微观组织观察,确定了合金热变形失稳区,得到了合适的热变形工艺参数为450480℃,应变速率为0.010.09s⁻¹。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6237/9866373/a9a96aa38ede/materials-16-00858-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验