Loshkareva Anna S, Popova Marina M, Shilova Liudmila A, Fedorova Natalia V, Timofeeva Tatiana A, Galimzyanov Timur R, Kuzmin Petr I, Knyazev Denis G, Batishchev Oleg V
Laboratory of Bioelectrochemistry, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia.
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
Membranes (Basel). 2023 Jan 7;13(1):76. doi: 10.3390/membranes13010076.
Topological rearrangements of biological membranes, such as fusion and fission, often require a sophisticated interplay between different proteins and cellular membranes. However, in the case of fusion proteins of enveloped viruses, even one molecule can execute membrane restructurings. Growing evidence indicates that matrix proteins of enveloped viruses can solely trigger the membrane bending required for another crucial step in virogenesis, the budding of progeny virions. For the case of the influenza A virus matrix protein M1, different studies report both in favor and against M1 being able to produce virus-like particles without other viral proteins. Here, we investigated the physicochemical mechanisms of M1 membrane activity on giant unilamellar vesicles of different lipid compositions using fluorescent confocal microscopy. We confirmed that M1 predominantly interacts electrostatically with the membrane, and its ability to deform the lipid bilayer is non-specific and typical for membrane-binding proteins and polypeptides. However, in the case of phase-separating membranes, M1 demonstrates a unique ability to induce macro-phase separation, probably due to the high affinity of M1's amphipathic helices to the raft boundary. Thus, we suggest that M1 is tailored to deform charged membranes with a specific activity in the case of phase-separating membranes.
生物膜的拓扑重排,如融合和裂变,通常需要不同蛋白质与细胞膜之间复杂的相互作用。然而,对于包膜病毒的融合蛋白而言,即使单个分子也能执行膜结构重组。越来越多的证据表明,包膜病毒的基质蛋白能够单独引发病毒发生过程中另一个关键步骤——子代病毒粒子出芽所需的膜弯曲。就甲型流感病毒基质蛋白M1而言,不同研究对M1在没有其他病毒蛋白的情况下能否产生病毒样颗粒的报道不一。在此,我们使用荧光共聚焦显微镜研究了M1在不同脂质组成的巨型单层囊泡上的膜活性的物理化学机制。我们证实,M1主要通过静电作用与膜相互作用,其使脂质双层变形的能力是非特异性的,这是膜结合蛋白和多肽的典型特征。然而,在相分离膜的情况下,M1表现出诱导宏观相分离的独特能力,这可能是由于M1的两亲性螺旋对脂筏边界具有高亲和力。因此,我们认为M1经过了特殊设计,能够在相分离膜的情况下以特定活性使带电膜变形。