Suppr超能文献

蛋白质相分离导致的膜弯曲。

Membrane bending by protein phase separation.

机构信息

Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712.

Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA 92093.

出版信息

Proc Natl Acad Sci U S A. 2021 Mar 16;118(11). doi: 10.1073/pnas.2017435118.

Abstract

Membrane bending is a ubiquitous cellular process that is required for membrane traffic, cell motility, organelle biogenesis, and cell division. Proteins that bind to membranes using specific structural features, such as wedge-like amphipathic helices and crescent-shaped scaffolds, are thought to be the primary drivers of membrane bending. However, many membrane-binding proteins have substantial regions of intrinsic disorder which lack a stable three-dimensional structure. Interestingly, many of these disordered domains have recently been found to form networks stabilized by weak, multivalent contacts, leading to assembly of protein liquid phases on membrane surfaces. Here we ask how membrane-associated protein liquids impact membrane curvature. We find that protein phase separation on the surfaces of synthetic and cell-derived membrane vesicles creates a substantial compressive stress in the plane of the membrane. This stress drives the membrane to bend inward, creating protein-lined membrane tubules. A simple mechanical model of this process accurately predicts the experimentally measured relationship between the rigidity of the membrane and the diameter of the membrane tubules. Discovery of this mechanism, which may be relevant to a broad range of cellular protrusions, illustrates that membrane remodeling is not exclusive to structured scaffolds but can also be driven by the rapidly emerging class of liquid-like protein networks that assemble at membranes.

摘要

膜弯曲是一种普遍存在的细胞过程,对于膜运输、细胞运动、细胞器发生和细胞分裂都是必需的。使用特定结构特征(如楔形两亲性螺旋和新月形支架)与膜结合的蛋白质被认为是膜弯曲的主要驱动因素。然而,许多膜结合蛋白具有大量的无规则区域,缺乏稳定的三维结构。有趣的是,这些无规区域中的许多最近被发现形成由弱多价接触稳定的网络,导致在膜表面上组装蛋白质液相对。在这里,我们询问膜相关蛋白液体如何影响膜曲率。我们发现,在合成和细胞衍生的膜泡表面上的蛋白质相分离在膜的平面中产生了相当大的压缩应力。这种应力驱动膜向内弯曲,形成由蛋白质排列的膜小管。该过程的简单力学模型准确地预测了实验测量的膜刚性与膜小管直径之间的关系。这种机制的发现可能与广泛的细胞突起有关,它表明膜重塑不仅限于结构支架,而且还可以由在膜上组装的快速出现的类液体状蛋白质网络驱动。

相似文献

1
Membrane bending by protein phase separation.蛋白质相分离导致的膜弯曲。
Proc Natl Acad Sci U S A. 2021 Mar 16;118(11). doi: 10.1073/pnas.2017435118.
4
Membrane bending by protein-protein crowding.蛋白质-蛋白质拥挤导致的膜弯曲。
Nat Cell Biol. 2012 Sep;14(9):944-9. doi: 10.1038/ncb2561. Epub 2012 Aug 19.
5
How curvature-generating proteins build scaffolds on membrane nanotubes.产生曲率的蛋白质如何在膜纳米管上构建支架。
Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):11226-11231. doi: 10.1073/pnas.1606943113. Epub 2016 Sep 21.
6
Molecular Mechanisms of Membrane Curvature Sensing by a Disordered Protein.无序蛋白感知膜曲率的分子机制。
J Am Chem Soc. 2019 Jul 3;141(26):10361-10371. doi: 10.1021/jacs.9b03927. Epub 2019 Jun 20.
9
Linear aggregation of proteins on the membrane as a prelude to membrane remodeling.蛋白质在膜上的线性聚集作为膜重塑的前奏。
Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20396-401. doi: 10.1073/pnas.1309819110. Epub 2013 Nov 27.
10
Molecular mechanisms of membrane deformation by I-BAR domain proteins.I-BAR结构域蛋白引起膜变形的分子机制。
Curr Biol. 2009 Jan 27;19(2):95-107. doi: 10.1016/j.cub.2008.12.029. Epub 2009 Jan 15.

引用本文的文献

7
Membrane tubulation induced by a bacterial glycolipid.细菌糖脂诱导的膜微管形成
Sci Rep. 2025 Mar 20;15(1):9699. doi: 10.1038/s41598-025-93563-8.
9
Organizing principles underlying COPII-mediated transport.COPII介导运输的组织原则。
Curr Opin Cell Biol. 2025 Jun;94:102492. doi: 10.1016/j.ceb.2025.102492. Epub 2025 Mar 10.
10
Membrane Association of Intrinsically Disordered Proteins.内在无序蛋白质的膜结合
Annu Rev Biophys. 2025 May;54(1):275-302. doi: 10.1146/annurev-biophys-070124-092816. Epub 2025 Feb 14.

本文引用的文献

1
Cryo-electron microscopy for the study of virus assembly.冷冻电镜技术在病毒组装研究中的应用。
Nat Chem Biol. 2020 Mar;16(3):231-239. doi: 10.1038/s41589-020-0477-1. Epub 2020 Feb 20.
7
Signals and forces shaping organogenesis of the small intestine.信号和力塑造小肠的器官发生。
Curr Top Dev Biol. 2019;132:31-65. doi: 10.1016/bs.ctdb.2018.12.001. Epub 2019 Jan 2.
8
BAR scaffolds drive membrane fission by crowding disordered domains.BAR 支架通过拥挤无序结构域来驱动膜裂变。
J Cell Biol. 2019 Feb 4;218(2):664-682. doi: 10.1083/jcb.201807119. Epub 2018 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验