Suppr超能文献

各种智慧城市传感器无初始信息的绝对眼压/眼内压估计模型。

Absolute IOP/EOP Estimation Models without Initial Information of Various Smart City Sensors.

机构信息

Department of Civil Engineering and Environmental Sciences, Korea Military Academy, 574 Hwarang-ro, Nowon-gu, Seoul 01805, Republic of Korea.

Department of Civil Engineering, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung-si 25457, Republic of Korea.

出版信息

Sensors (Basel). 2023 Jan 9;23(2):742. doi: 10.3390/s23020742.

Abstract

In smart cities, a large amount of optical camera equipment is deployed and used. Closed-circuit television (CCTV), unmanned aerial vehicles (UAVs), and smartphones are some examples of such equipment. However, additional information about these devices, such as 3D position, orientation information, and principal distance, is not provided. To solve this problem, the structured mobile mapping system point cloud was used in this study to investigate methods of estimating the principal point, position, and orientation of optical sensors without initial given values. The principal distance was calculated using two direct linear transformation (DLT) models and a perspective projection model. Methods for estimating position and orientation were discussed, and their stability was tested using real-world sensors. When the perspective projection model was used, the camera position and orientation were best estimated. The original DLT model had a significant error in the orientation estimation. The correlation between the DLT model parameters was thought to have influenced the estimation result. When the perspective projection model was used, the position and orientation errors were 0.80 m and 2.55°, respectively. However, when using a fixed-wing UAV, the estimated result was not properly produced owing to ground control point placement problems.

摘要

在智慧城市中,大量的光学摄像设备被部署和使用。闭路电视(CCTV)、无人机(UAV)和智能手机就是此类设备的一些例子。然而,这些设备的其他信息,如 3D 位置、方向信息和主距,并没有提供。为了解决这个问题,本研究使用了结构化移动测绘系统点云来研究在没有初始给定值的情况下估算光学传感器主点、位置和方向的方法。主距是使用两个直接线性变换(DLT)模型和透视投影模型计算得到的。讨论了位置和方向的估计方法,并使用实际传感器测试了它们的稳定性。当使用透视投影模型时,相机的位置和方向得到了最佳估计。原始 DLT 模型在方向估计上存在较大误差。认为 DLT 模型参数之间的相关性影响了估计结果。当使用透视投影模型时,位置和方向的误差分别为 0.80 米和 2.55°。然而,当使用固定翼无人机时,由于地面控制点的放置问题,估计结果并没有得到很好的生成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验