Suppr超能文献

一种用于微型智能终端的轻量级情感分析框架。

A Lightweight Sentiment Analysis Framework for a Micro-Intelligent Terminal.

机构信息

School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.

Songshan Laboratory, Zhengzhou 450018, China.

出版信息

Sensors (Basel). 2023 Jan 9;23(2):741. doi: 10.3390/s23020741.

Abstract

Sentiment analysis aims to mine polarity features in the text, which can empower intelligent terminals to recognize opinions and further enhance interaction capabilities with customers. Considerable progress has been made using recurrent neural networks or pre-trained models to learn semantic representations. However, recently published models with complex structures require increasing computational resources to reach state-of-the-art (SOTA) performance. It is still a significant challenge to deploy these models to run on micro-intelligent terminals with limited computing power and memory. This paper proposes a lightweight and efficient framework based on hybrid multi-grained embedding on sentiment analysis (MC-GGRU). The gated recurrent unit model is designed to incorporate a global attention structure that allows contextual representations to be learned from unstructured text using word tokens. In addition, a multi-grained feature layer can further enrich sentence representation features with implicit semantics from characters. Through hybrid multi-grained representation, MC-GGRU achieves high inference performance with a shallow structure. The experimental results of five public datasets show that our method achieves SOTA for sentiment classification with a trade-off between accuracy and speed.

摘要

情感分析旨在挖掘文本中的极性特征,使智能终端能够识别观点,进一步增强与客户的交互能力。使用递归神经网络或预训练模型来学习语义表示已经取得了相当大的进展。然而,最近发布的具有复杂结构的模型需要增加计算资源才能达到最新水平 (SOTA) 的性能。将这些模型部署到计算能力和内存有限的微智能终端上仍然是一个重大挑战。本文提出了一种基于混合多粒度嵌入的情感分析轻量级高效框架 (MC-GGRU)。门控循环单元模型设计用于结合全局注意力结构,允许使用单词标记从非结构化文本中学习上下文表示。此外,多粒度特征层可以进一步利用字符中的隐式语义丰富句子表示特征。通过混合多粒度表示,MC-GGRU 实现了具有浅层结构的高推理性能。五个公共数据集的实验结果表明,我们的方法在准确性和速度之间取得了折衷,实现了情感分类的 SOTA。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7312/9866325/200ec42fec32/sensors-23-00741-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验