Morrison Jamie I, Metzendorf Nicole G, Rofo Fadi, Petrovic Alex, Hultqvist Greta
Institutionen för Farmaci, Uppsala Universitet, Uppsala, Sweden.
J Neurochem. 2023 May;165(3):413-425. doi: 10.1111/jnc.15768. Epub 2023 Feb 10.
The interest for developing antibody-driven therapeutic interventions has exponentially grown over the last few decades. Even though there have been promising leaps in the development of efficacious antibody therapies, problems revolving around production and site-directed delivery of these large macromolecules persist. This is especially pertinent when it comes to designing and producing antibodies to penetrate the blood-brain barrier (BBB) to tackle neurodegenerative diseases. One of the most effective approaches to alleviating this problem is to employ a "Trojan Horse" approach, using receptor-mediated transcytosis, such as those governed by the transferrin receptor (TfR)-mediated pathways, to deliver large protein payloads into the brain. Even though this method is effective, ideal limiting factors, related to how the antibody binds to the TfR, need to be elucidated to improve BBB penetrance. With this said, we have designed and produced a single-chain Fc antibody, conjugated to an scFv8D3 TfR binding motif, creating a single-chain monovalent BBB transporter (scFc-scFv8D3). This recombinant protein is easy to produce and purify, demonstrates monovalent binding to the TfR and is structurally stable at physiologically relevant temperatures. Using an in vitro BBB model system, we show a positive correlation between the concentration of administered antibody and transcytosis efficacy, with scFc-scFv8D3 demonstrating significantly higher transcytosis levels compared with scFv8D3-conjugated bivalent antibodies at elevated administered concentrations. Furthermore, in vivo studies recapitulate the in vitro results, with the scFc-scFv8D3 demonstrating an elevated brain uptake at higher therapeutic doses in wild-type mice, comparable with that of the scFv8D3-conjugated bivalent antibody control. In addition, the half-life of the single-chain monovalent BBB transporter is comparable with that of standard IgG antibodies, indicating that the scFc format does not exacerbate physiological degradation. Our results lead us to the conclusion that valency and affinity are important variables to consider when discerning optimal transport across the BBB using TfR-mediated transcytosis pathways. In addition, we believe the single-chain Fc antibody we have described, which can easily be manipulated to accommodate a bispecific target tactic, provides a simple and efficacious approach for delivering therapeutic payloads to the brain milieu.
在过去几十年中,开发抗体驱动的治疗干预措施的兴趣呈指数级增长。尽管有效的抗体疗法在开发方面取得了令人鼓舞的进展,但围绕这些大分子的生产和定点递送的问题仍然存在。在设计和生产穿透血脑屏障(BBB)以治疗神经退行性疾病的抗体时,这一问题尤为突出。缓解这一问题最有效的方法之一是采用“特洛伊木马”方法,利用受体介导的转胞吞作用,如那些由转铁蛋白受体(TfR)介导的途径,将大的蛋白质载荷输送到大脑中。尽管这种方法有效,但与抗体如何与TfR结合相关的理想限制因素仍需阐明,以提高血脑屏障的穿透率。话虽如此,我们设计并生产了一种单链Fc抗体,与scFv8D3 TfR结合基序偶联,创建了一种单链单价血脑屏障转运体(scFc-scFv8D3)。这种重组蛋白易于生产和纯化,表现出与TfR的单价结合,并且在生理相关温度下结构稳定。使用体外血脑屏障模型系统,我们显示给药抗体的浓度与转胞吞作用功效之间存在正相关,在给药浓度升高时,scFc-scFv8D3的转胞吞水平明显高于scFv8D3偶联的二价抗体。此外,体内研究重现了体外结果,在野生型小鼠中,scFc-scFv8D3在较高治疗剂量下显示出更高的脑摄取量,与scFv8D3偶联的二价抗体对照相当。此外,单链单价血脑屏障转运体的半衰期与标准IgG抗体相当,表明scFc形式不会加剧生理降解。我们的结果使我们得出结论,在使用TfR介导的转胞吞途径识别跨血脑屏障的最佳转运时,价态和亲和力是需要考虑的重要变量。此外,我们相信我们所描述的单链Fc抗体可以很容易地进行操作以适应双特异性靶向策略,为将治疗载荷递送至脑环境提供了一种简单有效的方法。