Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China.
Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China.
J Crohns Colitis. 2023 Jun 16;17(6):909-918. doi: 10.1093/ecco-jcc/jjad011.
BACKGROUND AND AIMS: Ulcerative colitis [UC] is a complex heterogeneous disease. This study aims to reveal the underlying molecular features of UC using genome-scale transcriptomes of patients with UC, and to develop and validate a novel stratification scheme. METHODS: A normalised compendium was created using colon tissue samples (455 patients with UC and 147 healthy controls [HCs]), covering genes from 10 microarray datasets. Upregulated differentially expressed genes [DEGs] were subjected to functional network analysis, wherein samples were grouped using unsupervised clustering. Additionally, the robustness of subclustering was further assessed by two RNA sequencing datasets [100 patients with UC and 16 HCs]. Finally, the Xgboost classifier was applied to the independent datasets to evaluate the efficacy of different biologics in patients with UC. RESULTS: Based on 267 upregulated DEGs of the transcript profiles, UC patients were classified into three subtypes [subtypes A-C] with distinct molecular and cellular signatures. Epithelial activation-related pathways were significantly enriched in subtype A [named epithelial proliferation], whereas subtype C was characterised as the immune activation subtype with prominent immune cells and proinflammatory signatures. Subtype B [named mixed] was modestly activated in all the signalling pathways. Notably, subtype A showed a stronger association with the superior response of biologics such as golimumab, infliximab, vedolizumab, and ustekinumab compared with subtype C. CONCLUSIONS: We conducted a deep stratification of mucosal tissue using the most comprehensive microarray and RNA sequencing data, providing critical insights into pathophysiological features of UC, which could serve as a template for stratified treatment approaches.
背景与目的:溃疡性结肠炎[UC]是一种复杂的异质性疾病。本研究旨在通过 UC 患者的全基因组转录组揭示其潜在的分子特征,并开发和验证一种新的分层方案。
方法:使用结肠组织样本(455 例 UC 患者和 147 例健康对照[HC])创建标准化汇编,涵盖 10 个微阵列数据集的基因。对上调的差异表达基因[DEGs]进行功能网络分析,其中使用无监督聚类对样本进行分组。此外,通过两个 RNA 测序数据集[100 例 UC 患者和 16 例 HC]进一步评估子聚类的稳健性。最后,将 Xgboost 分类器应用于独立数据集,以评估不同生物制剂在 UC 患者中的疗效。
结果:基于转录谱中 267 个上调的 DEG,UC 患者被分为具有不同分子和细胞特征的三个亚型[A-C 型]。上皮激活相关途径在亚型 A[命名为上皮增殖]中显著富集,而亚型 C 则表现为具有明显免疫细胞和促炎特征的免疫激活亚型。亚型 B[命名为混合]在所有信号通路中均有适度激活。值得注意的是,与亚型 C 相比,亚型 A 与生物制剂如戈利木单抗、英夫利昔单抗、vedolizumab 和 ustekinumab 的优越反应具有更强的相关性。
结论:我们使用最全面的微阵列和 RNA 测序数据对黏膜组织进行了深入分层,为 UC 的病理生理特征提供了重要见解,这可以作为分层治疗方法的模板。
Cochrane Database Syst Rev. 2015-9-22
Medicine (Baltimore). 2023-10-27
Am J Transl Res. 2025-1-15
J Immunol Res. 2022
Inflamm Bowel Dis. 2021-4-15
Rheumatology (Oxford). 2021-7-1
Inflamm Bowel Dis. 2021-1-1
Gastroenterology. 2020-1-13
Gastroenterol Hepatol (N Y). 2019-10
Gut Liver. 2019-11-15