文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

探讨代谢相关性脂肪性肝炎和溃疡性结肠炎中与丁酸代谢相关的共享基因。

Exploring the butyrate metabolism-related shared genes in metabolic associated steatohepatitis and ulcerative colitis.

机构信息

Department of Gastroenterology, Renmin Hospital of Wuhan University, No 99 Zhangzhidong Road, Wuhan, 430060, Hubei Province, China.

Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.

出版信息

Sci Rep. 2024 Jul 10;14(1):15949. doi: 10.1038/s41598-024-66574-0.


DOI:10.1038/s41598-024-66574-0
PMID:38987612
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11237055/
Abstract

Metabolic-associated steatohepatitis (MASH) and ulcerative colitis (UC) exhibit a complex interconnection with immune dysfunction, dysbiosis of the gut microbiota, and activation of inflammatory pathways. This study aims to identify and validate critical butyrate metabolism-related shared genes between both UC and MASH. Clinical information and gene expression profiles were sourced from the Gene Expression Omnibus (GEO) database. Shared butyrate metabolism-related differentially expressed genes (sBM-DEGs) between UC and MASH were identified via various bioinformatics methods. Functional enrichment analysis was performed, and UC patients were categorized into subtypes using the consensus clustering algorithm based on sBM-DEGs. Key genes within sBM-DEGs were screened through Random Forest, Support Vector Machines-Recursive Feature Elimination, and Light Gradient Boosting. The diagnostic efficacy of these genes was evaluated using receiver operating characteristic (ROC) analysis on independent datasets. Additionally, the expression levels of characteristic genes were validated across multiple independent datasets and human specimens. Forty-nine shared DEGs between UC and MASH were identified, with enrichment analysis highlighting significant involvement in immune, inflammatory, and metabolic pathways. The intersection of butyrate metabolism-related genes with these DEGs produced 10 sBM-DEGs. These genes facilitated the identification of molecular subtypes of UC patients using an unsupervised clustering approach. ANXA5, CD44, and SLC16A1 were pinpointed as hub genes through machine learning algorithms and feature importance rankings. ROC analysis confirmed their diagnostic efficacy in UC and MASH across various datasets. Additionally, the expression levels of these three hub genes showed significant correlations with immune cells. These findings were validated across independent datasets and human specimens, corroborating the bioinformatics analysis results. Integrated bioinformatics identified three significant biomarkers, ANXA5, CD44, and SLC16A1, as DEGs linked to butyrate metabolism. These findings offer new insights into the role of butyrate metabolism in the pathogenesis of UC and MASH, suggesting its potential as a valuable diagnostic biomarker.

摘要

代谢相关性脂肪性肝炎(MASH)和溃疡性结肠炎(UC)与免疫功能障碍、肠道微生物群的失调以及炎症途径的激活之间存在复杂的相互关系。本研究旨在鉴定和验证 UC 和 MASH 之间关键的丁酸代谢相关共享基因。临床信息和基因表达谱来自基因表达综合数据库(GEO)。通过各种生物信息学方法,确定 UC 和 MASH 之间丁酸代谢相关差异表达基因(sBM-DEGs)。基于 sBM-DEGs 使用共识聚类算法对 UC 患者进行分类。通过随机森林、支持向量机-递归特征消除和轻梯度提升筛选 sBM-DEGs 中的关键基因。使用独立数据集的接收者操作特征(ROC)分析评估这些基因的诊断效能。此外,还在多个独立数据集和人类标本中验证了特征基因的表达水平。确定了 49 个 UC 和 MASH 之间的共享 DEG,富集分析突出了它们在免疫、炎症和代谢途径中的显著参与。丁酸代谢相关基因与这些 DEG 的交集产生了 10 个 sBM-DEGs。这些基因通过无监督聚类方法有助于识别 UC 患者的分子亚型。通过机器学习算法和特征重要性排名,确定 ANXA5、CD44 和 SLC16A1 为枢纽基因。ROC 分析在不同数据集上验证了它们在 UC 和 MASH 中的诊断效能。此外,这三个枢纽基因的表达水平与免疫细胞呈显著相关。这些发现通过独立数据集和人类标本得到验证,证实了生物信息学分析结果。综合生物信息学鉴定了三个重要的生物标志物,即 ANXA5、CD44 和 SLC16A1,它们是与丁酸代谢相关的 DEG。这些发现为丁酸代谢在 UC 和 MASH 发病机制中的作用提供了新的见解,表明其作为有价值的诊断生物标志物的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf5/11237055/697c93e552bc/41598_2024_66574_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf5/11237055/ba5004f5f289/41598_2024_66574_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf5/11237055/7ed40a3678f2/41598_2024_66574_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf5/11237055/e543032f84ff/41598_2024_66574_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf5/11237055/5f3aed606085/41598_2024_66574_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf5/11237055/d451c0ad8207/41598_2024_66574_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf5/11237055/4ac5cd79d1d7/41598_2024_66574_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf5/11237055/4ce206687cea/41598_2024_66574_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf5/11237055/43113cdd87d3/41598_2024_66574_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf5/11237055/271c0a18dfc6/41598_2024_66574_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf5/11237055/e10f1462a519/41598_2024_66574_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf5/11237055/5732916078c3/41598_2024_66574_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf5/11237055/ba15e084fbbe/41598_2024_66574_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf5/11237055/697c93e552bc/41598_2024_66574_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf5/11237055/ba5004f5f289/41598_2024_66574_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf5/11237055/7ed40a3678f2/41598_2024_66574_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf5/11237055/e543032f84ff/41598_2024_66574_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf5/11237055/5f3aed606085/41598_2024_66574_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf5/11237055/d451c0ad8207/41598_2024_66574_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf5/11237055/4ac5cd79d1d7/41598_2024_66574_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf5/11237055/4ce206687cea/41598_2024_66574_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf5/11237055/43113cdd87d3/41598_2024_66574_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf5/11237055/271c0a18dfc6/41598_2024_66574_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf5/11237055/e10f1462a519/41598_2024_66574_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf5/11237055/5732916078c3/41598_2024_66574_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf5/11237055/ba15e084fbbe/41598_2024_66574_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdf5/11237055/697c93e552bc/41598_2024_66574_Fig13_HTML.jpg

相似文献

[1]
Exploring the butyrate metabolism-related shared genes in metabolic associated steatohepatitis and ulcerative colitis.

Sci Rep. 2024-7-10

[2]
Evidence for the butyrate metabolism as key pathway improving ulcerative colitis in both pediatric and adult patients.

Bioengineered. 2021-12

[3]
Identification of shared gene signatures and molecular mechanisms between chronic kidney disease and ulcerative colitis.

Front Immunol. 2023

[4]
Identification of Mitophagy-Associated Genes for the Prediction of Metabolic Dysfunction-Associated Steatohepatitis Based on Interpretable Machine Learning Models.

J Inflamm Res. 2024-5-3

[5]
Exploration of the shared pathways and common biomarker PAN3 in ankylosing spondylitis and ulcerative colitis using integrated bioinformatics analysis.

Front Immunol. 2023

[6]
Identification of subclusters and prognostic genes based on GLS-associated molecular signature in ulcerative colitis.

Sci Rep. 2024-6-7

[7]
Identifying biomarkers associated with the diagnosis of ulcerative colitis via bioinformatics and machine learning.

Math Biosci Eng. 2023-4-17

[8]
Identification and experimental validation of immune-related gene PPARG is involved in ulcerative colitis.

Biochim Biophys Acta Mol Basis Dis. 2024-10

[9]
Shared biomarkers and immune cell infiltration signatures in ulcerative colitis and nonalcoholic steatohepatitis.

Sci Rep. 2023-10-28

[10]
Analysis and identification of ferroptosis-related genes in ulcerative colitis.

Scand J Gastroenterol. 2023

引用本文的文献

[1]
Identification and RT-qPCR Validation of Biomarkers Based on Butyrate Metabolism-Related Genes to Predict Recurrent Miscarriage.

J Inflamm Res. 2024-10-1

本文引用的文献

[1]
Inflammatory Bowel Diseases and Non-Alcoholic Fatty Liver Disease: Piecing a Complex Puzzle Together.

Int J Mol Sci. 2024-3-14

[2]
Shared biomarkers and immune cell infiltration signatures in ulcerative colitis and nonalcoholic steatohepatitis.

Sci Rep. 2023-10-28

[3]
Transendothelial electrical resistance measurement by a microfluidic device for functional study of endothelial barriers in inflammatory bowel disease.

Front Bioeng Biotechnol. 2023-7-14

[4]
Liver Fibrosis in Non-Alcoholic Fatty Liver Disease and Progression to Hepatocellular Carcinoma in Patients with Inflammatory Bowel Disease: A Systematic Review.

Cancers (Basel). 2023-6-27

[5]
Efficient Therapy of Inflammatory Bowel Disease (IBD) with Highly Specific and Durable Targeted Ta C Modified with Chondroitin Sulfate (TACS).

Adv Mater. 2023-9

[6]
Increased Risk of Non-Alcoholic Steatohepatitis in Patients With Inflammatory Bowel Disease: A Population-Based Study.

Cureus. 2023-3-7

[7]
Gut Microbiota in Non-Alcoholic Fatty Liver Disease Patients with Inflammatory Bowel Diseases: A Complex Interplay.

Nutrients. 2022-12-15

[8]
Isotretinoin and the risk of inflammatory bowel disease and irritable bowel syndrome: A large-scale global study.

J Am Acad Dermatol. 2023-4

[9]
Premorbid Steatohepatitis Increases the Seriousness of Dextran Sulfate Sodium-induced Ulcerative Colitis in Mice.

J Clin Transl Hepatol. 2022-10-28

[10]
KEGG for taxonomy-based analysis of pathways and genomes.

Nucleic Acids Res. 2023-1-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索