Sreeraj Vanteemar S, Shivakumar Venkataram, Bhalerao Gaurav V, Kalmady Sunil V, Narayanaswamy Janardhanan C, Venkatasubramanian Ganesan
InSTAR Clinic and Translational Psychiatry Lab, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India.
InSTAR Clinic and Translational Psychiatry Lab, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India; Department of Integrative Medicine, National Institute of Mental Health and Neurosciences, Bengaluru, India.
Asian J Psychiatr. 2023 Apr;82:103459. doi: 10.1016/j.ajp.2023.103459. Epub 2023 Jan 8.
Antipsychotics may modulate the resting state functional connectivity(rsFC) to improve clinical symptoms in schizophrenia(Sz). Existing literature has potential confounders like past medication effects and evaluating preselected regions/networks. We aimed to evaluate connectivity pattern changes with antipsychotics in unmedicated Sz using Multivariate pattern analysis(MVPA), a data-driven technique for whole-brain connectome analysis.
Forty-seven unmedicated patients with Sz(DSM-IV-TR) underwent clinical evaluation and neuroimaging at baseline and after 3-months of antipsychotic treatment. Resting-state functional MRI was analysed using group-MVPA to derive 5-components. The brain region with significant connectivity pattern changes with antipsychotics was identified, and post-hoc seed-to-voxel analysis was performed to identify connectivity changes and their association with symptom changes.
Connectome-MVPA analysis revealed the connectivity pattern of a cluster localised to left anterior cingulate and paracingulate gyri (ACC/PCG) (peak coordinates:x = -04,y = +30,z = +26;k = 12;cluster-p=0.002) to differ significantly after antipsychotics. Specifically, its connections with clusters of precuneus/posterior cingulate cortex(PCC) and left inferior temporal gyrus(ITG) correlated with improvement in positive and negative symptoms scores, respectively.
ACC/PCG, a hub of the default mode network, seems to mediate the antipsychotic effects in unmedicated Sz. Evaluating causality models with data from randomised controlled design using the MVPA approach would further enhance our understanding of therapeutic connectomics in Sz.
抗精神病药物可能调节静息态功能连接(rsFC)以改善精神分裂症(Sz)的临床症状。现有文献存在如既往用药效应和评估预选区域/网络等潜在混杂因素。我们旨在使用多变量模式分析(MVPA)评估未用药的精神分裂症患者使用抗精神病药物后的连接模式变化,MVPA是一种用于全脑连接组分析的数据驱动技术。
47例未用药的精神分裂症(DSM-IV-TR)患者在基线时以及抗精神病药物治疗3个月后接受了临床评估和神经影像学检查。使用组MVPA分析静息态功能磁共振成像以得出5个成分。识别出抗精神病药物治疗后连接模式有显著变化的脑区,并进行事后种子点到体素分析以识别连接变化及其与症状变化的关联。
连接组MVPA分析显示,位于左前扣带回和旁扣带回(ACC/PCG)(峰值坐标:x = -04,y = +30,z = +26;k = 12;聚类p = 0.002)的一个簇的连接模式在使用抗精神病药物后有显著差异。具体而言,其与楔前叶/后扣带回皮质(PCC)簇和左颞下回(ITG)的连接分别与阳性和阴性症状评分的改善相关。
ACC/PCG作为默认模式网络的枢纽,似乎介导了未用药的精神分裂症患者的抗精神病药物效应。使用MVPA方法通过随机对照设计的数据评估因果模型将进一步加深我们对精神分裂症治疗连接组学的理解。