Suppr超能文献

MAD-Net:用于功能骨髓分割的多注意力密集网络。

MAD-Net: Multi-attention dense network for functional bone marrow segmentation.

机构信息

Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen, 529020, China.

Radiotherapy Center, Jiangmen Central Hospital, Jiangmen, 529020, China.

出版信息

Comput Biol Med. 2023 Mar;154:106428. doi: 10.1016/j.compbiomed.2022.106428. Epub 2023 Jan 13.

Abstract

Radiotherapy is the main treatment modality for various pelvic malignancies. However, high intensity radiation can damage the functional bone marrow (FBM), resulting in hematological toxicity (HT). Accurate identification and protection of the FBM during radiotherapy planning can reduce pelvic HT. The traditional manual method for contouring the FBM is time-consuming and laborious. Therefore, development of an efficient and accurate automatic segmentation mode can provide a distinct leverage in clinical settings. In this paper, we propose the first network for performing the FBM segmentation task, which is referred to as the multi-attention dense network (named MAD-Net). Primarily, we introduce the dense convolution block to promote the gradient flow in the network as well as incite feature reuse. Next, a novel slide-window attention module is proposed to emphasize long-range dependencies and exploit interdependencies between features. Finally, we design a residual-dual attention module as the bottleneck layer, which further aggregates useful spatial details and explores intra-class responsiveness of high-level features. In this work, we conduct extensive experiments on our dataset of 3838 two-dimensional pelvic slices. Experimental results demonstrate that the proposed MAD-Net transcends previous state-of-the-art models in various metrics. In addition, the contributions of the proposed components are verified by ablation analysis, and we conduct experiments on three other datasets to manifest the generalizability of MAD-Net.

摘要

放射治疗是治疗各种盆腔恶性肿瘤的主要方法。然而,高强度的辐射会损害功能性骨髓(FBM),导致血液学毒性(HT)。在放射治疗计划中准确识别和保护 FBM 可以降低盆腔 HT。传统的手动勾画 FBM 的方法既耗时又费力。因此,开发一种高效、准确的自动分割模式可以在临床环境中提供明显的优势。本文提出了第一个用于执行 FBM 分割任务的网络,称为多注意密集网络(称为 MAD-Net)。首先,我们引入密集卷积块来促进网络中的梯度流,并激发特征重用。接下来,提出了一种新颖的滑动窗口注意模块,用于强调远程依赖关系并利用特征之间的相互依赖关系。最后,我们设计了一个残差双注意模块作为瓶颈层,进一步聚合有用的空间细节,并探索高级特征的类内响应能力。在这项工作中,我们在我们的 3838 个二维盆腔切片数据集上进行了广泛的实验。实验结果表明,所提出的 MAD-Net 在各种指标上都优于以前的最先进模型。此外,通过消融分析验证了所提出的组件的贡献,并且我们在另外三个数据集上进行了实验,以证明 MAD-Net 的泛化能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验