Suppr超能文献

脊柱肿瘤手术后医院获得性感染:脆弱性驱动的术前风险模型。

Hospital-acquired infection following spinal tumor surgery: A frailty-driven pre-operative risk model.

机构信息

Burrell College of Osteopathic Medicine, Las Cruces, NM, USA; Bowers Neurosurgical Frailty and Outcomes Data Science Lab, Albuquerque, NM 87131, USA.

Bowers Neurosurgical Frailty and Outcomes Data Science Lab, Albuquerque, NM 87131, USA; Department of Neurosurgery, University of New Mexico, Albuquerque, NM 87131, USA.

出版信息

Clin Neurol Neurosurg. 2023 Feb;225:107591. doi: 10.1016/j.clineuro.2023.107591. Epub 2023 Jan 11.

Abstract

BACKGROUND

Hospital-acquired infection (HAI) after spinal tumor resection surgery contributes to adverse patient outcomes and excess healthcare resource utilization. This study sought to develop a predictive model for HAI occurrence following surgery for spinal tumors.

METHODS

The National Surgical Quality Improvement Program (NSQIP) 2015-2019 database was queried for spinal tumor resections. Baseline demographics and preoperative clinical characteristics, including frailty, were analyzed. Frailty was measured by modified frailty score 5 (mFI-5) and risk analysis index (RAI). Univariate and multivariable analyses were performed to identify independent risk factors for HAI occurrence. A logit-based predictive model for HAI occurrence was designed and discriminative power was assessed via receiver operating characteristic (ROC) analysis.

RESULTS

Of 5883 patients undergoing spinal tumor surgery, HAI occurred in 574 (9.8 %). The HAI (vs. non-HAI) cohort was older and frailer with higher rates of preoperative functional dependence, chronic steroid use, chronic lung disease, coagulopathy, diabetes, hypertension, tobacco smoking, unintentional weight loss, and hypoalbuminemia (all P < 0.05). In multivariable analysis, independent predictors of HAI occurrence included severe frailty (mFI-5, OR: 2.3, 95 % CI: 1.1-5.2, P = 0.035), nonelective surgery (OR: 1.7, 95 % CI: 1.1-2.4, P = 0.007), and hypoalbuminemia (OR: 1.5, 95 % CI: 1.1-2.2, P = 0.027). A logistic regression model with frailty score alongside age, race, BMI, elective vs. non-elective surgery, and pre-operative labs have predicted HAI occurrence with a C-statistic of 0.68 (95 % CI: 0.64-0.72).

CONCLUSIONS

HAI occurrence after spinal tumor surgery can be predicted by standardized frailty metrics, mFI-5 and RAI-rev, alongside routinely measured preoperative characteristics (demographics, comorbidities, pre-operative labs).

摘要

背景

脊柱肿瘤切除术后医院获得性感染(HAI)会导致患者预后不良和过度利用医疗资源。本研究旨在建立脊柱肿瘤手术后 HAI 发生的预测模型。

方法

查询 2015-2019 年全国外科质量改进计划(NSQIP)数据库中的脊柱肿瘤切除术。分析基线人口统计学和术前临床特征,包括脆弱性。采用改良脆弱性评分 5 分(mFI-5)和风险分析指数(RAI)评估脆弱性。采用单变量和多变量分析确定 HAI 发生的独立危险因素。设计基于对数的 HAI 发生预测模型,并通过接受者操作特征(ROC)分析评估判别能力。

结果

在 5883 例接受脊柱肿瘤手术的患者中,574 例(9.8%)发生 HAI。HAI(与非 HAI 相比)组年龄较大,脆弱性较高,术前功能依赖、慢性类固醇使用、慢性肺部疾病、凝血功能障碍、糖尿病、高血压、吸烟、非故意体重减轻和低白蛋白血症的发生率较高(均 P<0.05)。多变量分析显示,HAI 发生的独立预测因素包括严重脆弱性(mFI-5,OR:2.3,95%CI:1.1-5.2,P=0.035)、非择期手术(OR:1.7,95%CI:1.1-2.4,P=0.007)和低白蛋白血症(OR:1.5,95%CI:1.1-2.2,P=0.027)。使用脆弱评分联合年龄、种族、BMI、择期与非择期手术以及术前实验室检查的逻辑回归模型预测 HAI 发生的 C 统计量为 0.68(95%CI:0.64-0.72)。

结论

脊柱肿瘤手术后 HAI 的发生可以通过标准化的脆弱性指标(mFI-5 和 RAI-rev)以及常规测量的术前特征(人口统计学、合并症、术前实验室检查)来预测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验