Biojone Caroline, C Casarotto Plinio, Cannarozzo Cecilia, Fred Senem Merve, Herrera-Rodríguez Rosa, Lesnikova Angelina, Voipio Mikko, Castrén Eero
Neuroscience Center, HiLife, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland; Aarhus University, Department of Biomedicine, Faculty of Health, and Translational Neuropsychiatry Unit, Department of Clinical Medicine.
Neuroscience Center, HiLife, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.
Prog Neurobiol. 2023 Mar;222:102413. doi: 10.1016/j.pneurobio.2023.102413. Epub 2023 Jan 20.
Nitric oxide (NO) has been long recognized as an important modulator of neural plasticity, but characterization of the molecular mechanisms involved - specially the guanylyl cyclase-independent ones - has been challenging. There is evidence that NO could modify BDNF-TRKB signaling, a key mediator of neuronal plasticity. However, the mechanism underlying the interplay of NO and TRKB remains unclear. Here we show that NO induces nitration of the tyrosine 816 in the TRKB receptor in vivo and in vitro, and that post-translational modification inhibits TRKB phosphorylation and binding of phospholipase Cγ1 (PLCγ1) to this same tyrosine residue. Additionally, nitration triggers clathrin-dependent endocytosis of TRKB through the adaptor protein AP-2 and ubiquitination, thereby increasing translocation of TRKB away from the neuronal surface and directing it towards lysosomal degradation. Accordingly, inhibition of nitric oxide increases TRKB phosphorylation and TRKB-dependent neurite branching in neuronal cultures. In vivo, chronic inhibition of neuronal nitric oxide synthase (nNOS) dramatically reduced TRKB nitration and facilitated TRKB signaling in the visual cortex, and promoted a shift in ocular dominance upon monocular deprivation - an indicator of increased plasticity. Altogether, our data describe and characterize a new molecular brake on plasticity, namely nitration of TRKB receptors.
一氧化氮(NO)长期以来一直被认为是神经可塑性的重要调节因子,但对其所涉及的分子机制的表征——特别是不依赖鸟苷酸环化酶的机制——一直具有挑战性。有证据表明,NO可以改变BDNF-TRKB信号传导,这是神经元可塑性的关键介质。然而,NO与TRKB相互作用的潜在机制仍不清楚。在这里,我们表明,NO在体内和体外均可诱导TRKB受体中酪氨酸816的硝化,并且这种翻译后修饰会抑制TRKB磷酸化以及磷脂酶Cγ1(PLCγ1)与该相同酪氨酸残基的结合。此外,硝化作用通过衔接蛋白AP-2和泛素化作用触发TRKB的网格蛋白依赖性内吞作用,从而增加TRKB从神经元表面的转运,并将其导向溶酶体降解。因此,抑制一氧化氮可增加神经元培养物中TRKB的磷酸化和TRKB依赖性神经突分支。在体内,慢性抑制神经元型一氧化氮合酶(nNOS)可显著降低视皮层中TRKB的硝化作用并促进TRKB信号传导,并在单眼剥夺后促进眼优势的转变——这是可塑性增加的一个指标。总之,我们的数据描述并表征了一种新的可塑性分子制动器,即TRKB受体的硝化作用。
Trends Neurosci. 2005-9
J Pharmacol Sci. 2003-4
Neuropsychopharmacology. 2010-3-3
Eur J Neurosci. 2016-9
Neurobiol Dis. 2010-11-1
Neurosci Bull. 2025-6-24
Neural Regen Res. 2025-3-1
Cell Death Dis. 2024-2-23
Neurosci Bull. 2023-9