Regenerative Bioscience Center, University of Georgia, 425 River Road, Athens, GA 30602, USA.
Regenerative Bioscience Center, University of Georgia, 425 River Road, Athens, GA 30602, USA; Department of Animal and Dairy Science, College of Agricultural and Environmental Science, University of Georgia, 425, River Road, Athens, GA 30602, USA.
J Neurosci Methods. 2023 Mar 1;387:109798. doi: 10.1016/j.jneumeth.2023.109798. Epub 2023 Jan 20.
Rodent reach-to-grasp function assessment is a translationally powerful model for evaluating neurological function impairments and recovery responses. Existing assessment platforms are experimenter-dependent, costly, or low-throughput with limited output measures. Further, a direct histologic comparison of neural activation has never been conducted between any novel, automated platform and the well-established single pellet skilled reach task (SRT).
To address these technological and knowledge gaps, we designed an open-source, low-cost Automatized Reach-to-Grasp (AutoRG) pull platform that reduces experimenter interventions and variability. We assessed reach-to-grasp function in rats across seven progressively difficult stages using AutoRG. We mapped AutoRG and SRT-activated motor circuitries in the rat brain using volumetric imaging of the immediate early gene-encoded Arc (activity-regulated cytoskeleton-associated) protein.
Rats demonstrated robust forelimb reaching and pulling behavior after training in AutoRG. Reliable force versus time responses were recorded for individual reach events in real time, which were used to derive several secondary functional measures of performance. Moreover, we provide the first demonstration that for a training period of 30 min, AutoRG and SRT both engage similar neural responses in the caudal forelimb area (CFA), rostral forelimb area (RFA), and sensorimotor area (S1).
AutoRG is the first low-cost, open-source pull system designed for the scale-up of volitional forelimb motor function testing and characterization of rodent reaching behavior. The similarities in neuronal activation patterns observed in the rat motor cortex after SRT and AutoRG assessments validate the AutoRG as a rigorously characterized, scalable alternative to the conventional SRT and expensive commercial systems.
啮齿动物伸手抓握功能评估是一种具有强大转化力的模型,可用于评估神经功能损伤和恢复反应。现有的评估平台依赖于实验者、成本高或通量低,输出测量方法有限。此外,在任何新的自动化平台和成熟的单颗粒熟练伸手任务(SRT)之间,从未进行过神经激活的直接组织学比较。
为了解决这些技术和知识差距,我们设计了一种开源、低成本的自动伸手抓握(AutoRG)拉平台,减少了实验者的干预和变异性。我们使用 AutoRG 在大鼠中评估了七个逐渐困难的伸手抓握阶段的功能。我们使用即时早期基因编码的 Arc(活性调节细胞骨架相关)蛋白的容积成像,绘制了大鼠大脑中 AutoRG 和 SRT 激活的运动回路。
大鼠在 AutoRG 中经过训练后,表现出强壮的前肢伸手和拉取行为。可靠的力与时间响应在实时记录单个伸手事件,这些响应可用于得出几个性能的次要功能测量。此外,我们首次证明,在 30 分钟的训练期内,AutoRG 和 SRT 都在尾侧前肢区(CFA)、前肢区(RFA)和感觉运动区(S1)中引发相似的神经反应。
AutoRG 是第一个低成本、开源的拉系统,用于扩大自愿性前肢运动功能测试的规模,并对啮齿动物的伸手行为进行特征描述。在 SRT 和 AutoRG 评估后,在大鼠运动皮层中观察到的神经元激活模式的相似性验证了 AutoRG 作为一种经过严格特征描述、可扩展的替代传统 SRT 和昂贵的商业系统的方法。