Suppr超能文献

用于高效氨电合成的无序金纳米团簇

Disordered Au Nanoclusters for Efficient Ammonia Electrosynthesis.

作者信息

Peng Xianyun, Zhang Rui, Mi Yuying, Wang Hsiao-Tsu, Huang Yu-Cheng, Han Lili, Head Ashley R, Pao Chih-Wen, Liu Xijun, Dong Chung-Li, Liu Qian, Zhang Shusheng, Pong Way-Faung, Luo Jun, Xin Huolin L

机构信息

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fujian, Fuzhou, 350002, P. R. China.

Institute of Zhejiang University - Quzhou, Zhejiang, Quzhou, 324000, P. R. China.

出版信息

ChemSusChem. 2023 Apr 6;16(7):e202201385. doi: 10.1002/cssc.202201385. Epub 2023 Feb 8.

Abstract

The electrochemical nitrogen (N ) reduction reaction (N RR) under mild conditions is a promising and environmentally friendly alternative to the traditional Haber-Bosch process with high energy consumption and greenhouse emission for the synthesis of ammonia (NH ), but high-yielding production is rendered challenging by the strong nonpolar N≡N bond in N molecules, which hinders their dissociation or activation. In this study, disordered Au nanoclusters anchored on two-dimensional ultrathin Ti C T MXene nanosheets are explored as highly active and selective electrocatalysts for efficient N -to-NH conversion, exhibiting exceptional activity with an NH yield rate of 88.3±1.7 μg h  mg and a faradaic efficiency of 9.3±0.4 %. A combination of in situ near-ambient pressure X-ray photoelectron spectroscopy and operando X-ray absorption fine structure spectroscopy is employed to unveil the uniqueness of this catalyst for N RR. The disordered structure is found to serve as the active site for N chemisorption and activation during the N RR process.

摘要

在温和条件下进行的电化学氮(N₂)还原反应(NRR)是一种有前景且环境友好的方法,可替代传统的哈伯-博施法来合成氨(NH₃),后者存在高能耗和温室气体排放的问题。然而,由于N₂分子中存在强非极性N≡N键,阻碍了其解离或活化,使得高产率生产面临挑战。在本研究中,探索了锚定在二维超薄Ti₃C₂TₓMXene纳米片上的无序金纳米团簇作为用于高效N₂到NH₃转化的高活性和选择性电催化剂,其表现出卓越的活性,NH₃产率为88.3±1.7 μg h⁻¹ mg⁻¹,法拉第效率为9.3±0.4%。采用原位近常压X射线光电子能谱和原位X射线吸收精细结构光谱相结合的方法,揭示了这种用于NRR的催化剂的独特性。发现无序结构在NRR过程中作为N₂化学吸附和活化的活性位点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验