Suppr超能文献

触发RuFe合金上的杂原子协同效应以促进氮化学吸附,从而在环境条件下实现高效氨电合成。

Triggering Heteroatom Ensemble Effect over RuFe Alloy to Promote Nitrogen Chemisorption for Efficient Ammonia Electrosynthesis at Ambient Conditions.

作者信息

Liu Sisi, He Yanzheng, Cheng Qiyang, Huan Yunfei, Yuan Xiaolei, Liu Jie, Shen Xiaowei, Wang Mengfan, Yan Chenglin, Qian Tao

机构信息

School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.

Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Energy, Soochow University, Suzhou 215006, China.

出版信息

J Phys Chem Lett. 2024 Sep 5;15(35):8990-8996. doi: 10.1021/acs.jpclett.4c01978. Epub 2024 Aug 26.

Abstract

Ammonia (NH) electrosynthesis from nitrogen (N) provides a promising strategy for carbon neutrality, circumventing the energy-intensive and carbon-emitting Haber-Bosch process. However, the current system still presents unsatisfactory performance, and the bottleneck lies in the rational synthesis of catalytic centers with efficient N chemisorption ability. Herein, a heteroatom ensemble effect is deliberately triggered over RuFe alloy with spatial proximity of metal sites to promote electrocatalytic nitrogen reduction. The heteronuclear RuFe ensemble with increased surface polarization and modulated electronic structure offers the feasibility to optimize the adsorption configuration of electroactive substances and facilitate chemical bond scission. The promotion of N chemisorption and the following hydrogenation are demonstrated by the in situ Fourier transform infrared spectroscopy characterizations. The catalyst thus permits significantly enhanced conversion of N to NH in a 0.1 M HCl environment, with a maximum ammonia yield rate of 75.45 μg h mg and a high Faradaic efficiency of 35.49%.

摘要

由氮气(N₂)电合成氨(NH₃)为实现碳中和提供了一种很有前景的策略,避免了能源密集型且碳排放量大的哈伯-博施法。然而,当前的体系性能仍不尽人意,瓶颈在于合理合成具有高效氮化学吸附能力的催化中心。在此,通过金属位点在空间上接近的RuFe合金特意引发了杂原子协同效应,以促进电催化氮还原。具有增强表面极化和调制电子结构的异核RuFe组合提供了优化电活性物质吸附构型并促进化学键断裂的可行性。原位傅里叶变换红外光谱表征证明了对氮化学吸附及随后氢化的促进作用。因此,该催化剂在0.1 M HCl环境中能显著提高氮气转化为氨的效率,最大氨产率为75.45 μg h⁻¹ mg⁻¹,法拉第效率高达35.49%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验