Liu Sisi, He Yanzheng, Cheng Qiyang, Huan Yunfei, Yuan Xiaolei, Liu Jie, Shen Xiaowei, Wang Mengfan, Yan Chenglin, Qian Tao
School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Energy, Soochow University, Suzhou 215006, China.
J Phys Chem Lett. 2024 Sep 5;15(35):8990-8996. doi: 10.1021/acs.jpclett.4c01978. Epub 2024 Aug 26.
Ammonia (NH) electrosynthesis from nitrogen (N) provides a promising strategy for carbon neutrality, circumventing the energy-intensive and carbon-emitting Haber-Bosch process. However, the current system still presents unsatisfactory performance, and the bottleneck lies in the rational synthesis of catalytic centers with efficient N chemisorption ability. Herein, a heteroatom ensemble effect is deliberately triggered over RuFe alloy with spatial proximity of metal sites to promote electrocatalytic nitrogen reduction. The heteronuclear RuFe ensemble with increased surface polarization and modulated electronic structure offers the feasibility to optimize the adsorption configuration of electroactive substances and facilitate chemical bond scission. The promotion of N chemisorption and the following hydrogenation are demonstrated by the in situ Fourier transform infrared spectroscopy characterizations. The catalyst thus permits significantly enhanced conversion of N to NH in a 0.1 M HCl environment, with a maximum ammonia yield rate of 75.45 μg h mg and a high Faradaic efficiency of 35.49%.
由氮气(N₂)电合成氨(NH₃)为实现碳中和提供了一种很有前景的策略,避免了能源密集型且碳排放量大的哈伯-博施法。然而,当前的体系性能仍不尽人意,瓶颈在于合理合成具有高效氮化学吸附能力的催化中心。在此,通过金属位点在空间上接近的RuFe合金特意引发了杂原子协同效应,以促进电催化氮还原。具有增强表面极化和调制电子结构的异核RuFe组合提供了优化电活性物质吸附构型并促进化学键断裂的可行性。原位傅里叶变换红外光谱表征证明了对氮化学吸附及随后氢化的促进作用。因此,该催化剂在0.1 M HCl环境中能显著提高氮气转化为氨的效率,最大氨产率为75.45 μg h⁻¹ mg⁻¹,法拉第效率高达35.49%。