Suppr超能文献

用于混合超级电容器的嵌入还原氧化石墨烯结构的纳米片组装中空铜镍磷化物球体的制备

Fabrication of nanosheet-assembled hollow copper-nickel phosphide spheres embedded in reduced graphene oxide texture for hybrid supercapacitors.

作者信息

Amiri Maryam, Mohammadi Zardkhoshoui Akbar, Hosseiny Davarani Saied Saeed

机构信息

Department of Chemistry, Shahid Beheshti University, G. C., Evin, 1983963113, Tehran, Iran.

出版信息

Nanoscale. 2023 Feb 9;15(6):2806-2819. doi: 10.1039/d2nr06305k.

Abstract

Owing to their metalloid characteristics with high electrical conductivity, transition metal phosphides (TMPs) have attracted considerable research attention as prospective cathodes for hybrid supercapacitors. Unfortunately, they usually exhibit low rate performance as well as poor longevity, which does not meet the demands of hybrid supercapacitors. The nanocomposite constructed from reduced graphene oxide (rGO) and TMPs with a highly porous nature can effectively overcome the above-mentioned issues, greatly widening their utilization. In this work, we fabricated nanosheet-assembled hollow copper-nickel phosphide spheres (NH-CNPSs) by the controllable phosphatizing of copper-nickel-ethylene glycol (CN-EG) precursors. Then, porous NH-CNPSs were embedded in rGO texture (NH-CNPS-rGO) to form a unique porous nanoarchitecture. The obtained NH-CNPS-rGO has several advantages benefiting as the cathode electrode, such as (i) the hollow structure as well as porous nanosheets are conducive to fast electrolyte diffusion, (ii) the electrical conductivity of NH-CNPS is further enhanced when coupled with the rGO texture, hence promoting electron transfer in the whole structure, (iii) wrapping NH-CNPSs within the rGO texture endows the nanocomposite with much better structural stability, resulting in longer durability of the electrode, And (iv) the porous structures generated in the nanocomposite provide a perfect space for reducing the mass transfer resistance and accessing the electrolyte, thereby boosting the reaction kinetics. The tests demonstrated that the optimal NH-CNPS-rGO electrode revealed a capacity of up to 1075 C g, a superior rate capacity, and exceptional longevity of 94.7%. Moreover, a hybrid supercapacitor (NH-CNPS-rGO‖AC) equipped with the NH-CNPS-rGO-cathode electrode and activated carbon (AC)-anode electrode represented a satisfactory energy density of 64 W h kg at 801 W kg and amazing longevity (91.8% retention after 13 000 cycles), which endorses the promising potential of NH-CNPS-rGO for high-efficiency supercapacitors. This research showcases an appropriate method to engineer hollow TMP-rGO nanocomposites as effective materials for supercapacitors.

摘要

由于具有类金属特性和高电导率,过渡金属磷化物(TMPs)作为混合超级电容器的潜在阴极引起了相当多的研究关注。不幸的是,它们通常表现出低倍率性能以及较差的寿命,这无法满足混合超级电容器的需求。由具有高度多孔性质的还原氧化石墨烯(rGO)和TMPs构建的纳米复合材料可以有效克服上述问题,大大拓宽了它们的应用范围。在这项工作中,我们通过对铜 - 镍 - 乙二醇(CN - EG)前驱体进行可控磷化制备了纳米片组装的中空铜 - 镍磷化物球体(NH - CNPSs)。然后,将多孔的NH - CNPSs嵌入rGO结构(NH - CNPS - rGO)中,形成独特的多孔纳米结构。所获得的NH - CNPS - rGO作为阴极电极具有多个优势,例如:(i)中空结构以及多孔纳米片有利于电解质快速扩散;(ii)NH - CNPS与rGO结构耦合时,其电导率进一步提高,从而促进整个结构中的电子转移;(iii)将NH - CNPSs包裹在rGO结构中赋予纳米复合材料更好的结构稳定性,导致电极具有更长的耐久性;以及(iv)纳米复合材料中产生的多孔结构为降低传质阻力和接触电解质提供了理想空间,从而加快反应动力学。测试表明,最佳的NH - CNPS - rGO电极展现出高达1075 C/g的容量、优异的倍率性能以及94.7%的超长寿命。此外,配备NH - CNPS - rGO阴极电极和活性炭(AC)阳极电极的混合超级电容器(NH - CNPS - rGO‖AC)在801 W/kg时表现出令人满意的64 W h/kg的能量密度以及惊人的寿命(13000次循环后保留91.8%),这证实了NH - CNPS - rGO在高效超级电容器方面的巨大潜力。本研究展示了一种合适的方法来设计中空TMP - rGO纳米复合材料,使其成为超级电容器的有效材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验