文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于对抗肺癌的吉非替尼负载淀粉纳米颗粒:全因子设计优化及细胞毒性评估

Gefitinib-loaded starch nanoparticles for battling lung cancer: Optimization by full factorial design and cytotoxicity evaluation.

作者信息

Amin Haitham, Osman Shaaban K, Mohammed Ahmed M, Zayed Gamal

机构信息

Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.

Al-Azhar Centre of Nanosciences and Applications (ACNA), Al-Azhar University, Assiut 71524, Egypt.

出版信息

Saudi Pharm J. 2023 Jan;31(1):29-54. doi: 10.1016/j.jsps.2022.11.004. Epub 2022 Nov 15.


DOI:10.1016/j.jsps.2022.11.004
PMID:36685309
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9845129/
Abstract

Lung cancer is the number one killer among all cancer types. For decades, clinicians have been using conventional chemotherapeutics, but they can't rely on them alone anymore, because they poison bad cells and good cells as well. Researchers exploited nanotechnology as a potential tool to develop a platform for drug delivery to improve therapeutic efficiency. A quality by design synthesis of gefitinib-loaded starch nanoparticles (Gef-StNPs) has emerged as an essential tool to study and optimize the factors included in their synthesis. Therefore, we applied design of experiment (DOE) tools to attain the essential knowledge for the synthesis of high-quality Gef-StNPs that can deliver and concentrate the gefitinib (Gef) at A549 cells, thereby improving therapeutic efficacy and minimizing adverse effects. The cytotoxicity after exposing the A549 human lung cancer cells to the optimized Gef-StNPs was found to be much higher than that of the pure Gef (IC = 6.037 ± 0.24 and 21.65 ± 0.32 μg/mL, respectively). The optimized Gef-StNPs formula showed superiority over the pure Gef regarding the cellular uptake in A549 human cell line (3.976 ± 0.14 and 1.777 ± 0.1 μg/mL) and apoptotic population (77.14 ± 1.43 and 29.38 ± 1.11 %), respectively. The results elucidate why researchers have a voracious appetite for using natural biopolymers to combat lung cancer and paint an optimistic picture of their potential to be a promising tool in battling lung cancer.

摘要

肺癌是所有癌症类型中的头号杀手。几十年来,临床医生一直在使用传统化疗药物,但他们不能再仅仅依赖这些药物了,因为它们会同时毒害坏细胞和好细胞。研究人员利用纳米技术作为一种潜在工具来开发药物递送平台,以提高治疗效率。载有吉非替尼的淀粉纳米颗粒(Gef-StNPs)的质量源于设计合成已成为研究和优化其合成中所包含因素的重要工具。因此,我们应用实验设计(DOE)工具来获取合成高质量Gef-StNPs的基本知识,这种纳米颗粒能够在A549细胞中递送并浓缩吉非替尼(Gef),从而提高治疗效果并将副作用降至最低。将A549人肺癌细胞暴露于优化后的Gef-StNPs后发现,其细胞毒性远高于纯吉非替尼(IC分别为6.037±0.24和21.65±0.32μg/mL)。在A549人细胞系中的细胞摄取(分别为3.976±0.14和1.777±0.1μg/mL)和凋亡细胞群(分别为77.14±1.43和29.38±1.11%)方面,优化后的Gef-StNPs配方显示出优于纯吉非替尼的性能。这些结果阐明了为什么研究人员热衷于使用天然生物聚合物来对抗肺癌,并描绘了它们成为对抗肺癌的有前途工具的乐观前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/7e8c203e7e85/gr24.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/f9bd1dc78257/gr1a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/8cdf4a95fc27/gr1b.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/9a1f3c4fc811/gr1c.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/65daa24706d5/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/48e2ee13520a/gr3a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/c9ce32802f20/gr3b.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/c734588f1097/gr3c.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/825c3c03e732/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/329f87d5f597/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/ad20db8665e7/gr6a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/65131e70f697/gr6b.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/95aeafa72c6e/gr6c.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/f7cbd7100cc7/gr7a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/ddc5b6bfcb70/gr7b.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/0b9d032cb491/gr7c.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/eaeef6e53cd4/gr8a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/0b0f67977b58/gr8b.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/b67f7f2ac832/gr8c.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/1335e062f6df/gr9a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/41d06ecd6ff6/gr9b.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/838ecff8925b/gr9c.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/e0950c4a1195/gr10a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/9874f4ce89ed/gr10b.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/8c15a6d26faa/gr10c.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/8a8105d24b47/gr11a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/c0ac38ac3eb8/gr11b.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/94bdd354cf1a/gr11c.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/678fdcda8c8d/gr11d.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/47a5d0fe5df8/gr11e.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/a03798fc3543/gr11f.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/86a8744a9600/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/70db1cfbf666/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/9dce42b13165/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/2abcb247f627/gr15a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/c36ac6930b55/gr15b.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/e5808ba17707/gr15c.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/c6ed80a5d62c/gr15d.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/2c24fa53f2c2/gr15e.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/33d7183151d5/gr16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/cbb8ee8fbffb/gr17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/6f51d6097b55/gr18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/278aaa2e0a31/gr19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/1b9b86ee077b/gr20a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/283a3c9d126b/gr20b.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/7490ac08b587/gr20c.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/548b6533f7ff/gr21.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/6fd0b0e3e1b8/gr22.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/fafa4100c4c3/gr23a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/55a5c32a19f3/gr23b.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/7e8c203e7e85/gr24.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/f9bd1dc78257/gr1a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/8cdf4a95fc27/gr1b.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/9a1f3c4fc811/gr1c.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/65daa24706d5/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/48e2ee13520a/gr3a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/c9ce32802f20/gr3b.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/c734588f1097/gr3c.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/825c3c03e732/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/329f87d5f597/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/ad20db8665e7/gr6a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/65131e70f697/gr6b.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/95aeafa72c6e/gr6c.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/f7cbd7100cc7/gr7a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/ddc5b6bfcb70/gr7b.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/0b9d032cb491/gr7c.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/eaeef6e53cd4/gr8a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/0b0f67977b58/gr8b.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/b67f7f2ac832/gr8c.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/1335e062f6df/gr9a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/41d06ecd6ff6/gr9b.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/838ecff8925b/gr9c.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/e0950c4a1195/gr10a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/9874f4ce89ed/gr10b.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/8c15a6d26faa/gr10c.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/8a8105d24b47/gr11a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/c0ac38ac3eb8/gr11b.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/94bdd354cf1a/gr11c.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/678fdcda8c8d/gr11d.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/47a5d0fe5df8/gr11e.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/a03798fc3543/gr11f.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/86a8744a9600/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/70db1cfbf666/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/9dce42b13165/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/2abcb247f627/gr15a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/c36ac6930b55/gr15b.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/e5808ba17707/gr15c.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/c6ed80a5d62c/gr15d.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/2c24fa53f2c2/gr15e.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/33d7183151d5/gr16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/cbb8ee8fbffb/gr17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/6f51d6097b55/gr18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/278aaa2e0a31/gr19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/1b9b86ee077b/gr20a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/283a3c9d126b/gr20b.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/7490ac08b587/gr20c.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/548b6533f7ff/gr21.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/6fd0b0e3e1b8/gr22.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/fafa4100c4c3/gr23a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/55a5c32a19f3/gr23b.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc5/9845129/7e8c203e7e85/gr24.jpg

相似文献

[1]
Gefitinib-loaded starch nanoparticles for battling lung cancer: Optimization by full factorial design and cytotoxicity evaluation.

Saudi Pharm J. 2023-1

[2]
Chitosan nanoparticles as a smart nanocarrier for gefitinib for tackling lung cancer: Design of experiment and in vitro cytotoxicity study.

Int J Biol Macromol. 2023-8-15

[3]
Engineered Nanoscale Lipid-Based Formulation as Potential Enhancer of Gefitinib Lymphatic Delivery: Cytotoxicity and Apoptotic Studies Against the A549 Cell Line.

AAPS PharmSciTech. 2022-7-1

[4]
PEGylated SLN as a Promising Approach for Lymphatic Delivery of Gefitinib to Lung Cancer.

Int J Nanomedicine. 2022

[5]
Optimization of Gefitinib-Loaded Nanostructured Lipid Carrier as a Biomedical Tool in the Treatment of Metastatic Lung Cancer.

Molecules. 2023-1-3

[6]
p28-functionalized PLGA nanoparticles loaded with gefitinib reduce tumor burden and metastases formation on lung cancer.

J Control Release. 2021-9-10

[7]
Preparation and evaluation of inhalable dry powder containing glucosamine-conjugated gefitinib SLNs for lung cancer therapy.

Drug Dev Ind Pharm. 2020-8

[8]
TPGS decorated NLC shift gefitinib from portal absorption into lymphatic delivery: Intracellular trafficking, biodistribution and bioavailability studies.

Colloids Surf B Biointerfaces. 2023-3

[9]
In vitro and in vivo antitumor effect of gefitinib nanoparticles on human lung cancer.

Drug Deliv. 2017-11

[10]
Erythrocyte membrane-camouflaged gefitinib/albumin nanoparticles for tumor imaging and targeted therapy against lung cancer.

Int J Biol Macromol. 2021-12-15

引用本文的文献

[1]
Carbon nanotubes/ordered mesoporous carbon/chitosan nanocomposite as a promising carrier for everolimus targeted delivery toward lung cancer cells.

J Mater Sci Mater Med. 2025-5-31

[2]
Formulation Development of Natural Polymeric Nanoparticles, In Vitro Antiaging Evaluation, and Metabolite Profiling of Leaf Extracts.

Pharmaceuticals (Basel). 2025-2-20

[3]
A Comprehensive Review of Nanoparticles: From Classification to Application and Toxicity.

Molecules. 2024-7-25

[4]
Recent Developments in Tyrosine Kinase Inhibitor-based Nanotherapeutics for EGFR-resistant Non-small Cell Lung Cancer.

Curr Drug Deliv. 2025

[5]
Preparation, Optimization, and In-Vitro Evaluation of Brusatol- and Docetaxel-Loaded Nanoparticles for the Treatment of Prostate Cancer.

Pharmaceutics. 2024-1-16

[6]
Clinical Trials for Oral, Inhaled and Intravenous Drug Delivery System for Lung Cancer and Emerging Nanomedicine-Based Approaches.

Int J Nanomedicine. 2023

[7]
Development of Gefitinib-Loaded Solid Lipid Nanoparticles for the Treatment of Breast Cancer: Physicochemical Evaluation, Stability, and Anticancer Activity in Breast Cancer (MCF-7) Cells.

Pharmaceuticals (Basel). 2023-11-2

本文引用的文献

[1]
Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics.

Genes Dis. 2022-3-18

[2]
Design of smart nanomedicines for effective cancer treatment.

Int J Pharm. 2022-6-10

[3]
Gefitinib loaded PLGA and chitosan coated PLGA nanoparticles with magnified cytotoxicity against A549 lung cancer cell lines.

Saudi J Biol Sci. 2021-9

[4]
Influence of gelatinization degree and octenyl succinic anhydride esterification on the water sorption characteristics of corn starch.

Carbohydr Polym. 2021-10-15

[5]
p28-functionalized PLGA nanoparticles loaded with gefitinib reduce tumor burden and metastases formation on lung cancer.

J Control Release. 2021-9-10

[6]
Morphology, crystalline structure and digestibility of debranched starch nanoparticles varying in average degree of polymerization and fabrication methods.

Carbohydr Polym. 2021-3-15

[7]
The compatibilization of poly (propylene carbonate)/poly (lactic acid) blends in presence of core-shell starch nanoparticles.

Carbohydr Polym. 2021-2-15

[8]
Synthesis of controlled size starch nanoparticles (SNPs).

Carbohydr Polym. 2020-8-16

[9]
Fabrication, characterization and evaluation of myricetin adsorption onto starch nanoparticles.

Carbohydr Polym. 2020-12-15

[10]
Cellular uptake and anti-inflammatory effects of palm oil-derived delta (δ)-tocotrienol in microglia.

Cell Immunol. 2020-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索