文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

不同框架材料制作的上颌种植体支持全牙弓修复体的生物力学研究:一项有限元分析

Biomechanical investigation of maxillary implant-supported full-arch prostheses produced with different framework materials: a finite elements study.

作者信息

Topcu Ersöz Mirac Berke, Mumcu Emre

机构信息

Department of Prosthodontics, Faculty of Dentistry, Eskisehir Osmangazi University, Eskisehir, Turkey.

Advanced Material Technologies Application and Research Center, Eskisehir Osmangazi University, Eskisehir, Turkey.

出版信息

J Adv Prosthodont. 2022 Dec;14(6):346-359. doi: 10.4047/jap.2022.14.6.346. Epub 2022 Dec 22.


DOI:10.4047/jap.2022.14.6.346
PMID:36685790
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9832146/
Abstract

PURPOSE: Four and six implant-supported fixed full-arch prostheses with various framework materials were assessed under different loading conditions. MATERIALS AND METHODS: In the edentulous maxilla, the implants were positioned in a configuration of four to six implant modalities. CoCr, Ti, ZrO, and PEEK materials were used to produce the prosthetic structure. Using finite element stress analysis, the first molar was subjected to a 200 N axial and 45° oblique force. Stresses were measured on the bone, implants, abutment screw, abutment, and prosthetic screw. The Von Mises, maximum, and minimum principal stress values were calculated and compared. RESULTS: The maximum and minimum principal stresses in bone were determined as CoCr < ZrO < Ti < PEEK. The Von Mises stresses on the implant, implant screw, abutment, and prosthetic screws were determined as CoCr < ZrO < Ti < PEEK. The highest Von Mises stress was 9584.4 Mpa in PEEK material on the prosthetic screw under 4 implant-oblique loading. The highest maximum principal stress value in bone was found to be 120.89 Mpa, for PEEK in 4 implant-oblique loading. CONCLUSION: For four and six implant-supported structures, and depending on the loading condition, the system accumulated different stresses. The distribution of stress was reduced in materials with a high elastic modulus. When choosing materials for implant-supported fixed prostheses, it is essential to consider both the number of implants and the mechanical and physical attributes of the framework material.

摘要

目的:评估采用不同框架材料的4颗和6颗种植体支持的固定全牙弓修复体在不同加载条件下的情况。 材料与方法:在无牙上颌骨中,种植体按4至6种植体模式布局。使用钴铬合金(CoCr)、钛(Ti)、氧化锆(ZrO)和聚醚醚酮(PEEK)材料制作修复结构。采用有限元应力分析,对第一磨牙施加200 N轴向力和45°斜向力。测量骨、种植体、基台螺钉、基台和修复螺钉上的应力。计算并比较冯·米塞斯应力、最大主应力和最小主应力值。 结果:骨中的最大主应力和最小主应力确定为CoCr<ZrO<Ti<PEEK。种植体、种植体螺钉、基台和修复螺钉上的冯·米塞斯应力确定为CoCr<ZrO<Ti<PEEK。在4种植体斜向加载下,PEEK材料修复螺钉上的最高冯·米塞斯应力为9584.4 Mpa。在4种植体斜向加载下,PEEK材料在骨中的最高最大主应力值为120.89 Mpa。 结论:对于4颗和6颗种植体支持的结构,根据加载条件,系统积累不同应力。高弹性模量材料中的应力分布减少。在选择种植体支持的固定修复体材料时,必须考虑种植体数量以及框架材料的机械和物理属性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e432/9832146/88e0af2e2863/jap-14-346-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e432/9832146/ced468dc6142/jap-14-346-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e432/9832146/2e5b15aa1c7a/jap-14-346-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e432/9832146/5b6c0f5ef61f/jap-14-346-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e432/9832146/498b4e2a90b8/jap-14-346-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e432/9832146/d9f1964bf8ed/jap-14-346-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e432/9832146/1f125c3fe7dd/jap-14-346-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e432/9832146/629397821b81/jap-14-346-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e432/9832146/88e0af2e2863/jap-14-346-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e432/9832146/ced468dc6142/jap-14-346-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e432/9832146/2e5b15aa1c7a/jap-14-346-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e432/9832146/5b6c0f5ef61f/jap-14-346-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e432/9832146/498b4e2a90b8/jap-14-346-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e432/9832146/d9f1964bf8ed/jap-14-346-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e432/9832146/1f125c3fe7dd/jap-14-346-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e432/9832146/629397821b81/jap-14-346-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e432/9832146/88e0af2e2863/jap-14-346-g008.jpg

相似文献

[1]
Biomechanical investigation of maxillary implant-supported full-arch prostheses produced with different framework materials: a finite elements study.

J Adv Prosthodont. 2022-12

[2]
[Three-dimensional finite element analysis of different framework materials in implant-supported fixed mandibular prosthesis].

Zhonghua Kou Qiang Yi Xue Za Zhi. 2021-2-9

[3]
Biomechanical behavior of implant retained prostheses in the posterior maxilla using different materials: a finite element study.

BMC Oral Health. 2024-4-15

[4]
The Effects of Using PEEK Copings and Different Restorative Materials on the Stress Distribution in Tooth-and-Implant-Supported Prostheses Under Static Loading: 3D FEA.

Int J Oral Maxillofac Implants. 2025-5-29

[5]
Biomechanical Analysis of Different Framework Design, Framework Material and Bone Density in the Edentulous Mandible With Fixed Implant-Supported Prostheses: A Three-Dimensional Finite Element Study.

J Prosthodont. 2023-4

[6]
Mechanical Response of PEKK and PEEK As Frameworks for Implant-Supported Full-Arch Fixed Dental Prosthesis: 3D Finite Element Analysis.

Eur J Dent. 2022-2

[7]
Biomechanics of 3-implant-supported and 4-implant-supported mandibular screw-retained prostheses: A 3D finite element analysis study.

J Prosthet Dent. 2020-3-19

[8]
Examination of Various Abutment Designs Behavior Depending on Load Using Finite Element Analysis.

Biomimetics (Basel). 2024-8-16

[9]
Biomechanical comparison of different prosthetic materials and posterior implant angles in all-on-4 treatment concept by three-dimensional finite element analysis.

Biomed Tech (Berl). 2022-8-26

[10]
Three-Dimensional Finite Element Analysis of the Biomechanical Behaviors of Implants with Different Connections, Lengths, and Diameters Placed in the Maxillary Anterior Region.

Int J Oral Maxillofac Implants. 2016

引用本文的文献

[1]
Marginal gap of three-dimensional printed full-arch frameworks supported by all-on-four and all-on-six implant designs.

J Indian Prosthodont Soc. 2025-7-1

[2]
OT Bridge prosthetic system with different number of screws in all on six maxillary prosthesis: finite element analysis.

BMC Oral Health. 2025-5-28

[3]
Finite element analysis of welded titanium bar and poly ether ether ketone bar in maxillary full arch splinted interim prosthesis.

Sci Rep. 2025-5-9

[4]
Assessment of the Impact of Bone Quality and Abutment Configuration on the Fatigue Performance of Dental Implant Systems Using Finite Element Analysis (FEA).

J Pers Med. 2024-9-28

[5]
Influence of Framework Material and Abutment Configuration on Fatigue Performance in Dental Implant Systems: A Finite Element Analysis.

Medicina (Kaunas). 2024-9-6

[6]
A retrospective study on the influence of inclination of cusp on implant marginal bone height in patients with periodontal disease.

Acta Odontol Scand. 2024-9-12

[7]
Biomechanical behavior of implant retained prostheses in the posterior maxilla using different materials: a finite element study.

BMC Oral Health. 2024-4-15

[8]
The All-on-4 Concept Using Polyetheretherketone (PEEK)-Acrylic Resin Prostheses: Follow-Up Results of the Development Group at 5 Years and the Routine Group at One Year.

Biomedicines. 2023-11-9

本文引用的文献

[1]
Biomechanical Analysis of Different Framework Design, Framework Material and Bone Density in the Edentulous Mandible With Fixed Implant-Supported Prostheses: A Three-Dimensional Finite Element Study.

J Prosthodont. 2023-4

[2]
Biomechanical analysis of inclined and cantilever design with different implant framework materials in mandibular complete-arch implant restorations.

J Prosthet Dent. 2022-5

[3]
Influence of Framework Material and Posterior Implant Angulation in Full-Arch All-on-4 Implant-Supported Prosthesis Stress Concentration.

Dent J (Basel). 2022-1-14

[4]
Finite Element Analysis of effect of cusp inclination and occlusal contacts in PFM and PEEK implant-supported crowns on resultant stresses.

Med J Armed Forces India. 2022-1

[5]
Biomechanical analyses of one-piece dental implants composed of titanium, zirconia, PEEK, CFR-PEEK, or GFR-PEEK: Stresses, strains, and bone remodeling prediction by the finite element method.

J Biomed Mater Res B Appl Biomater. 2022-1

[6]
Effect of prosthetic framework material, cantilever length and opposing arch on peri-implant strain in an all-on-four implant prostheses.

Niger J Clin Pract. 2021-6

[7]
Finite element analysis of the effect of framework materials at the bone-implant interface in the all-on-four implant system.

Dent Res J (Isfahan). 2021-2-23

[8]
The influence of framework material on stress distribution in maxillary complete-arch fixed prostheses supported by four dental implants: a three-dimensional finite element analysis.

Comput Methods Biomech Biomed Engin. 2021-11

[9]
Discrepancy at the implant abutment-prosthesis interface of complete-arch cobalt-chromium implant frameworks fabricated by additive and subtractive technologies before and after ceramic veneering.

J Prosthet Dent. 2021-5

[10]
Biomechanical Comparison of a New Triple Cylindrical Implant Design and a Conventional Cylindrical Implant Design on the Mandible by Three-Dimensional Finite Element Analysis.

Int J Oral Maxillofac Implants. 2020

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索