Wagner H, Takahashi T, Konishi M
Division of Biology, California Institute of Technology, Pasadena 91125.
J Neurosci. 1987 Oct;7(10):3105-16. doi: 10.1523/JNEUROSCI.07-10-03105.1987.
This paper investigates the role of the central nucleus of the barn owl's inferior colliculus in determination of the sound-source azimuth. The central nucleus contains many neurons that are sensitive to interaural time difference (ITD), the cue for azimuth in the barn owl. The response of these neurons varies in a cyclic manner with the ITD of a tone or noise burst. Response maxima recur at integer multiples of the period of the stimulating tone, or, if the stimulus is noise, at integer multiples of the period corresponding to the neuron's best frequency. Such neurons can signal, by means of their relative spike rate, the phase difference between the sounds reaching the left and right ears. Since an interaural phase difference corresponds to more than one ITD, these neurons represent ITD ambiguously. We call this phenomenon phase ambiguity. The central nucleus is tonotopically organized and its neurons are narrowly tuned to frequency. Neurons in an array perpendicular to isofrequency laminae form a physiological and anatomical unit; only one ITD, the array-specific ITD, activates all neurons in an array at the same relative level. We, therefore, may say that, in the central nucleus, an ITD is conserved in an array of neurons. Array-specific ITDs are mapped and encompass the entire auditory space of the barn owl. Individual space-specific neurons of the external nucleus, which receive inputs from a wide range of frequency channels (Knudsen and Konishi, 1978), are selective for a unique ITD. Space-specific neurons do not show phase ambiguity when stimulated with noise (Takahashi and Konishi, 1986). Space-specific neurons receive inputs from arrays that are selective for the same ITD. The collective response of the neurons in an array may be the basis for the absence of phase ambiguity in space-specific neurons.
本文研究了仓鸮下丘中央核在声源方位确定中的作用。中央核包含许多对耳间时间差(ITD)敏感的神经元,ITD是仓鸮中用于确定方位的线索。这些神经元的反应随纯音或噪声脉冲的ITD呈周期性变化。反应最大值在刺激纯音周期的整数倍时再次出现,或者,如果刺激是噪声,则在对应于神经元最佳频率的周期的整数倍时再次出现。这样的神经元可以通过它们相对的放电率来信号化到达左耳和右耳的声音之间的相位差。由于耳间相位差对应于不止一个ITD,这些神经元对ITD的表征是模糊的。我们将这种现象称为相位模糊。中央核是按音频拓扑组织的,其神经元对频率的调谐很窄。垂直于等频层的阵列中的神经元形成一个生理和解剖单位;只有一个ITD,即阵列特异性ITD,能以相同的相对水平激活阵列中的所有神经元。因此,我们可以说,在中央核中,一个ITD在一组神经元中是守恒的。阵列特异性ITD被映射并涵盖了仓鸮的整个听觉空间。外侧核中接受来自广泛频率通道输入的单个空间特异性神经元(Knudsen和Konishi, 1978)对唯一的ITD具有选择性。当用噪声刺激时,空间特异性神经元不会表现出相位模糊(Takahashi和Konishi, 1986)。空间特异性神经元从对相同ITD具有选择性的阵列接收输入。阵列中神经元的集体反应可能是空间特异性神经元不存在相位模糊的基础。