Rudatis Paolo, Hrubesch Jakob, Kremshuber Stefan, Apaydin Dogukan H, Eder Dominik
Institute of Materials Chemistry, TU Wien, Getreidemarkt 9, Wien 1060, Austria.
ACS Omega. 2023 Jan 4;8(2):2027-2033. doi: 10.1021/acsomega.2c05241. eCollection 2023 Jan 17.
Co-doping represents a valid approach to maximize the performance of photocatalytic and photoelectrocatalytic semiconductors. Albeit theoretical predictions in hematite suggesting a bulk n-type doping and a surface p-type doping would deliver best results, hematite co-doping with coupled cations possessing low and high oxidation states has shown promising results. Herein, we report, for the first time, Sb and Li co-doping of hematite photoanodes. Particularly, this is also a seminal work for the introduction of the highly reactive Sb directly into the hematite thin films. Upon co-doping, we have a synergistic effect on the current densities with a 67-fold improvement over the standard. Via a combined investigation with profuse photoelectrochemical measurements, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman analyses, we confirm the two doping roles of Sb and Li as the substitutional and interstitial dopant, respectively. The improvements are attributed to a higher charge carrier concentration along with a lower charge transfer resistance at the surface.
共掺杂是一种使光催化和光电催化半导体性能最大化的有效方法。尽管对赤铁矿的理论预测表明,体相n型掺杂和表面p型掺杂能产生最佳效果,但赤铁矿与具有低氧化态和高氧化态的耦合阳离子进行共掺杂已显示出有前景的结果。在此,我们首次报道了赤铁矿光阳极的Sb和Li共掺杂。特别地,这也是将高活性的Sb直接引入赤铁矿薄膜的开创性工作。共掺杂后,我们对电流密度产生了协同效应,比标准情况提高了67倍。通过结合大量光电化学测量、X射线衍射、X射线光电子能谱和拉曼分析进行研究,我们证实了Sb和Li分别作为替代掺杂剂和间隙掺杂剂的两种掺杂作用。这些改进归因于更高的电荷载流子浓度以及表面更低的电荷转移电阻。