文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Controlled Synthesis of Dendrite-like Polyglycerols Using Aluminum Complex for Biomedical Applications.

作者信息

Perumal Govindaraj, Pappuru Sreenath, Doble Mukesh, Chakraborty Debashis, Shajahan Shanavas, Abu Haija Mohammad

机构信息

Department of Conservative Dentistry and Endodontics, Saveetha Dental College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai600 077, India.

Faculty of Chemical Engineering and the Grand Technion Energy Program, Technion-Israel Institute of Technology, Haifa320003, Israel.

出版信息

ACS Omega. 2023 Jan 4;8(2):2377-2388. doi: 10.1021/acsomega.2c06761. eCollection 2023 Jan 17.


DOI:10.1021/acsomega.2c06761
PMID:36687077
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9851026/
Abstract

This work describes a one-pot synthesis of dendrite-like hyperbranched polyglycerols (HPGs) via a ring-opening multibranching polymerization (ROMBP) process using a bis(5,7-dichloro-2-methyl-8-quinolinolato)methyl aluminum complex () as a catalyst and 1,1,1-tris(hydroxymethyl)propane/trimethylol propane (TMP) as an initiator. Single-crystal X-ray diffraction (XRD) analysis was used to elucidate the molecular structure of complex . Inverse-gated (IG)C NMR analysis of HPGs showed degree of branching between 0.50 and 0.57. Gel permeation chromatography (GPC) analysis of the HPG polymers provided low, medium, and high-molecular weight ( ) polymers ranging from 14 to 73 kDa and molecular weight distributions ( / ) between 1.16 and 1.35. The obtained HPGs exhibited high wettability with water contact angle between 18 and 21° and ranging between -39 and -55 °C. Notably, ancillary ligand-supported aluminum complexes as catalysts for HPG polymerization reactions have not been reported to date. The obtained HPG polymers in the presence of the aluminum complex () can be used for various biomedical applications. Here, nanocomposite electrospun fibers were fabricated with synthesized HPG polymer. The nanofibers were subjected to cell culture experiments to evaluate cytocompatibility behavior with L929 and MG63 cells. The cytocompatibility studies of HPG polymer and nanocomposite scaffold showed high cell viability and spreading. The study results concluded, synthesized HPG polymers and composite nanofibers can be used for various biomedical applications.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1292/9851026/ababa2615a26/ao2c06761_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1292/9851026/5efa3672db7c/ao2c06761_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1292/9851026/7429fe39c385/ao2c06761_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1292/9851026/d3ea24f7c347/ao2c06761_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1292/9851026/de484b00a379/ao2c06761_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1292/9851026/a4b0ab910ae6/ao2c06761_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1292/9851026/d4f2940241e1/ao2c06761_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1292/9851026/b9b760f3c9dd/ao2c06761_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1292/9851026/40564abdc986/ao2c06761_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1292/9851026/f39239b2b073/ao2c06761_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1292/9851026/ababa2615a26/ao2c06761_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1292/9851026/5efa3672db7c/ao2c06761_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1292/9851026/7429fe39c385/ao2c06761_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1292/9851026/d3ea24f7c347/ao2c06761_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1292/9851026/de484b00a379/ao2c06761_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1292/9851026/a4b0ab910ae6/ao2c06761_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1292/9851026/d4f2940241e1/ao2c06761_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1292/9851026/b9b760f3c9dd/ao2c06761_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1292/9851026/40564abdc986/ao2c06761_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1292/9851026/f39239b2b073/ao2c06761_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1292/9851026/ababa2615a26/ao2c06761_0009.jpg

相似文献

[1]
Controlled Synthesis of Dendrite-like Polyglycerols Using Aluminum Complex for Biomedical Applications.

ACS Omega. 2023-1-4

[2]
Nb and Ta benzotriazole or benzoxazole phenoxide complexes as catalysts for the ring-opening polymerization of glycidol to synthesize hyperbranched polyglycerols.

Dalton Trans. 2017-11-23

[3]
Synthesis, characterization, and biocompatibility of biodegradable hyperbranched polyglycerols from acid-cleavable ketal group functionalized initiators.

Biomacromolecules. 2012-9-5

[4]
Hyperbranched polyglycerols: recent advances in synthesis, biocompatibility and biomedical applications.

J Mater Chem B. 2017-12-21

[5]
Self-assembled monothiol-terminated hyperbranched polyglycerols on a gold surface: a comparative study on the structure, morphology, and protein adsorption characteristics with linear poly(ethylene glycol)s.

Langmuir. 2008-5-6

[6]
Nonionic Surfactant Properties of Amphiphilic Hyperbranched Polyglycerols.

Langmuir. 2020-8-18

[7]
Hyperbranched polyglycerols: from the controlled synthesis of biocompatible polyether polyols to multipurpose applications.

Acc Chem Res. 2010-1-19

[8]
Biodegradable polyglycerols with randomly distributed ketal groups as multi-functional drug delivery systems.

Biomaterials. 2013-5-17

[9]
Synthesis and characterization of carboxylic acid conjugated, hydrophobically derivatized, hyperbranched polyglycerols as nanoparticulate drug carriers for cisplatin.

Biomacromolecules. 2010-12-3

[10]
Synthesis of magnesium phosphate nanoflakes and its PCL composite electrospun nanofiber scaffolds for bone tissue regeneration.

Mater Sci Eng C Mater Biol Appl. 2019-12-7

引用本文的文献

[1]
Bio-functionalized carbon dots for signaling immuno-reaction of carcinoembryonic antigen in an electrochemical biosensor for cancer biomarker detection.

Discov Nano. 2024-2-29

本文引用的文献

[1]
Volume Overlap Variation within Hyperbranched Polymer Brushes Resolves Topology Effects against Protein Fouling.

Biomacromolecules. 2022-11-14

[2]
Polyglycerols as Multi-Functional Platforms: Synthesis and Biomedical Applications.

Polymers (Basel). 2022-6-30

[3]
Modification of carbon-based nanomaterials by polyglycerol: recent advances and applications.

RSC Adv. 2021-12-20

[4]
Surface-Grafted Hyperbranched Polyglycerol Coating: Varying Extents of Fouling Resistance across a Range of Proteins and Cells.

ACS Appl Bio Mater. 2020-6-15

[5]
Nonionic Surfactant Properties of Amphiphilic Hyperbranched Polyglycerols.

Langmuir. 2020-8-18

[6]
Bilayer nanostructure coated AZ31 magnesium alloy implants: in vivo reconstruction of critical-sized rabbit femoral segmental bone defect.

Nanomedicine. 2020-10

[7]
Hyperbranched polyglycerols: recent advances in synthesis, biocompatibility and biomedical applications.

J Mater Chem B. 2017-12-21

[8]
A bifunctional nanocarrier based on amphiphilic hyperbranched polyglycerol derivatives.

J Mater Chem B. 2013-8-7

[9]
Surface-functionalizable membranes of polycaprolactone-click-hyperbranched polyglycerol copolymers from combined atom transfer radical polymerization, ring-opening polymerization and click chemistry.

J Mater Chem B. 2013-3-7

[10]
Synthesis of magnesium phosphate nanoflakes and its PCL composite electrospun nanofiber scaffolds for bone tissue regeneration.

Mater Sci Eng C Mater Biol Appl. 2019-12-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索