Faculty of Pharmaceutical Sciences, University of British Columbia, 2146 East Mall, Vancouver, British Columbia, Canada.
Biomacromolecules. 2011 Jan 10;12(1):145-55. doi: 10.1021/bm101080p. Epub 2010 Dec 3.
Hyperbranched polyglycerols (HPGs) with hydrophobic cores and derivatized with methoxy poly(ethylene glycol) were synthesized and further functionalized with carboxylate groups to bind and deliver cisplatin. Low and high levels of carboxylate were conjugated to HPGs (HPG-C(8/10)-MePEG(6.5)-COOH(113) and HPG-C(8/10)-MePEG(6.5)-COOH(348)) and their structures were confirmed through NMR and FTIR spectroscopy and potentiometric titration. The hydrodynamic diameter of the HPGs ranged from 5-10 nm and the addition of COOH groups decreased the zeta potential of the polymers. HPG-C(8/10)-MePEG(6.5)-COOH(113) bound up to 10% w/w cisplatin, whereas HPG-C(8/10)-MePEG(6.5)-COOH(348) bound up to 20% w/w drug with 100% efficiency. Drug was released from HPG-C(8/10)-MePEG(6.5)-COOH(113) over 7 days at the same rate, regardless of the pH. Cisplatin release from HPG-C(8/10)-MePEG(6.5)-COOH(348) was significantly slower than HPG-C(8/10)-MePEG(6.5)-COOH(113) at pH 6 and 7.4, but similar at pH 4.5. Release of cisplatin into artificial urine was considerably faster than into buffer. Carboxylated HPGs demonstrated good biocompatibility, and drug-loaded HPGs effectively inhibited proliferation of KU-7-luc bladder cancer cells.
支化聚甘油(HPG)具有疏水性核心,并衍生出甲氧基聚乙二醇(MePEG),进一步官能化羧酸盐以结合和输送顺铂。低水平和高水平的羧酸盐与 HPG 结合(HPG-C(8/10)-MePEG(6.5)-COOH(113)和 HPG-C(8/10)-MePEG(6.5)-COOH(348)),并通过 NMR 和 FTIR 光谱和电位滴定法确认其结构。HPG 的水动力学直径范围为 5-10nm,添加 COOH 基团会降低聚合物的zeta 电位。HPG-C(8/10)-MePEG(6.5)-COOH(113)可结合高达 10%w/w 的顺铂,而 HPG-C(8/10)-MePEG(6.5)-COOH(348)可结合高达 20%w/w 的药物,结合效率为 100%。HPG-C(8/10)-MePEG(6.5)-COOH(113)在相同的速率下在 7 天内释放出相同量的药物,而与 pH 值无关。HPG-C(8/10)-MePEG(6.5)-COOH(348)在 pH 6 和 7.4 时比 HPG-C(8/10)-MePEG(6.5)-COOH(113)的顺铂释放速度明显较慢,但在 pH 4.5 时则相似。顺铂在人工尿液中的释放速度明显快于缓冲液。羧基化 HPG 表现出良好的生物相容性,载药 HPG 有效抑制了 KU-7-luc 膀胱癌细胞的增殖。