Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, New Jersey 08854, United States.
Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan.
Nano Lett. 2023 Mar 8;23(5):2046-2055. doi: 10.1021/acs.nanolett.2c03958. Epub 2023 Jan 23.
The growing knowledge of the links between aberrant mitochondrial gene transcription and human diseases necessitates both an effective and dynamic approach to control mitochondrial DNA (mtDNA) transcription. To address this challenge, we developed a nanoparticle-based synthetic mitochondrial transcription regulator (). provides great colloidal stability, excellent biocompatibility, efficient cell uptake, and selective mitochondria targeting and can be monitored in live cells using near-infrared fluorescence. Notably, controlled mtDNA transcription in a human cell line in an effective and selective manner. targeting the light strand promoter region of mtDNA resulted in the downregulation of ND6 gene silencing, which eventually affected cell redox status, with considerably increased reactive oxygen species (ROS) generation. In summary, we developed for the efficient, nonviral modification of mitochondrial DNA transcription. Our platform technology can potentially contribute to understanding the fundamental mechanisms of mitochondrial disorders and developing effective treatments for mitochondrial diseases.
线粒体基因转录异常与人类疾病之间关联的相关知识不断增加,这就需要一种有效且动态的方法来控制线粒体 DNA(mtDNA)转录。为了应对这一挑战,我们开发了一种基于纳米颗粒的人工合成线粒体转录调控物()。该调控物具有良好的胶体稳定性、出色的生物相容性、高效的细胞摄取能力以及选择性的线粒体靶向能力,并且可以使用近红外荧光在活细胞中进行监测。值得注意的是,该调控物能够以有效且选择性的方式控制人细胞系中的 mtDNA 转录。靶向 mtDNA 的轻链启动子区域导致 ND6 基因沉默下调,这最终影响了细胞的氧化还原状态,导致活性氧(ROS)生成显著增加。总之,我们开发了用于高效、非病毒修饰线粒体 DNA 转录的方法。我们的平台技术可能有助于理解线粒体疾病的基本机制,并开发针对线粒体疾病的有效治疗方法。