Suppr超能文献

基于纳米颗粒的人工线粒体 DNA 转录调控因子: 。

Nanoparticle-Based Artificial Mitochondrial DNA Transcription Regulator: .

机构信息

Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, New Jersey 08854, United States.

Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan.

出版信息

Nano Lett. 2023 Mar 8;23(5):2046-2055. doi: 10.1021/acs.nanolett.2c03958. Epub 2023 Jan 23.

Abstract

The growing knowledge of the links between aberrant mitochondrial gene transcription and human diseases necessitates both an effective and dynamic approach to control mitochondrial DNA (mtDNA) transcription. To address this challenge, we developed a nanoparticle-based synthetic mitochondrial transcription regulator (). provides great colloidal stability, excellent biocompatibility, efficient cell uptake, and selective mitochondria targeting and can be monitored in live cells using near-infrared fluorescence. Notably, controlled mtDNA transcription in a human cell line in an effective and selective manner. targeting the light strand promoter region of mtDNA resulted in the downregulation of ND6 gene silencing, which eventually affected cell redox status, with considerably increased reactive oxygen species (ROS) generation. In summary, we developed for the efficient, nonviral modification of mitochondrial DNA transcription. Our platform technology can potentially contribute to understanding the fundamental mechanisms of mitochondrial disorders and developing effective treatments for mitochondrial diseases.

摘要

线粒体基因转录异常与人类疾病之间关联的相关知识不断增加,这就需要一种有效且动态的方法来控制线粒体 DNA(mtDNA)转录。为了应对这一挑战,我们开发了一种基于纳米颗粒的人工合成线粒体转录调控物()。该调控物具有良好的胶体稳定性、出色的生物相容性、高效的细胞摄取能力以及选择性的线粒体靶向能力,并且可以使用近红外荧光在活细胞中进行监测。值得注意的是,该调控物能够以有效且选择性的方式控制人细胞系中的 mtDNA 转录。靶向 mtDNA 的轻链启动子区域导致 ND6 基因沉默下调,这最终影响了细胞的氧化还原状态,导致活性氧(ROS)生成显著增加。总之,我们开发了用于高效、非病毒修饰线粒体 DNA 转录的方法。我们的平台技术可能有助于理解线粒体疾病的基本机制,并开发针对线粒体疾病的有效治疗方法。

相似文献

1
Nanoparticle-Based Artificial Mitochondrial DNA Transcription Regulator: .
Nano Lett. 2023 Mar 8;23(5):2046-2055. doi: 10.1021/acs.nanolett.2c03958. Epub 2023 Jan 23.
3
Regulation of mitochondrial genome replication by hypoxia: The role of DNA oxidation in D-loop region.
Free Radic Biol Med. 2016 Jul;96:78-88. doi: 10.1016/j.freeradbiomed.2016.04.011. Epub 2016 Apr 25.
4
Mitochondrial fusion increases the mitochondrial DNA copy number in budding yeast.
Genes Cells. 2011 May;16(5):527-44. doi: 10.1111/j.1365-2443.2011.01504.x. Epub 2011 Apr 5.
5
How to breakthrough mitochondrial DNA methylation-associated networks.
Cell Biol Toxicol. 2020 Jun;36(3):195-198. doi: 10.1007/s10565-020-09539-z. Epub 2020 Jun 8.
6
Nuclear HMGA1 nonhistone chromatin proteins directly influence mitochondrial transcription, maintenance, and function.
Exp Cell Res. 2007 Jan 1;313(1):77-87. doi: 10.1016/j.yexcr.2006.09.014. Epub 2006 Sep 22.
10
Mitochondrial activity in gametes and transmission of viable mtDNA.
Biol Direct. 2015 May 16;10:22. doi: 10.1186/s13062-015-0057-6.

引用本文的文献

1
TBC1D15 Expression Indicates the Toxicity of Gold Nanoparticles on Mitochondria in PC-12 Cells.
ACS Omega. 2025 May 30;10(28):30127-30136. doi: 10.1021/acsomega.5c00379. eCollection 2025 Jul 22.
2
Targeting mitochondrial dynamics and redox regulation in cardiovascular diseases.
Trends Pharmacol Sci. 2024 Apr;45(4):290-303. doi: 10.1016/j.tips.2024.02.001. Epub 2024 Mar 7.

本文引用的文献

2
Controlling Intracellular Enzymatic Self-Assembly of Peptide by Host-Guest Complexation for Programming Cancer Cell Death.
Nano Lett. 2022 Sep 28;22(18):7588-7596. doi: 10.1021/acs.nanolett.2c02612. Epub 2022 Aug 4.
3
Nanoparticle-Driven Controllable Mitochondrial Regulation through Lysosome-Mitochondria Interactome.
ACS Nano. 2022 Aug 23;16(8):12553-12568. doi: 10.1021/acsnano.2c04078. Epub 2022 Jul 25.
4
Tailoring Silica-Based Nanoscintillators for Peroxynitrite-Potentiated Nitrosative Stress in Postoperative Radiotherapy of Colon Cancer.
Nano Lett. 2022 Aug 10;22(15):6409-6417. doi: 10.1021/acs.nanolett.2c02472. Epub 2022 Jul 22.
5
ROS-Targeted Depression Therapy via BSA-Incubated Ceria Nanoclusters.
Nano Lett. 2022 Jun 8;22(11):4519-4527. doi: 10.1021/acs.nanolett.2c01334. Epub 2022 May 18.
6
Heavy Atom-Free, Mitochondria-Targeted, and Activatable Photosensitizers for Photodynamic Therapy with Real-Time In-Situ Therapeutic Monitoring.
Angew Chem Int Ed Engl. 2022 Jun 20;61(25):e202201815. doi: 10.1002/anie.202201815. Epub 2022 Apr 25.
7
CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA.
Nat Biotechnol. 2022 Sep;40(9):1378-1387. doi: 10.1038/s41587-022-01256-8. Epub 2022 Apr 4.
8
Anionic Cyanine J-Type Aggregate Nanoparticles with Enhanced Photosensitization for Mitochondria-Targeting Tumor Phototherapy.
Angew Chem Int Ed Engl. 2022 Jun 13;61(24):e202203093. doi: 10.1002/anie.202203093. Epub 2022 Apr 19.
9
Softening redox homeostasis in cancer cells.
Nat Cell Biol. 2022 Feb;24(2):133-134. doi: 10.1038/s41556-022-00845-8.
10
Mitochondrial and metabolic dysfunction in ageing and age-related diseases.
Nat Rev Endocrinol. 2022 Apr;18(4):243-258. doi: 10.1038/s41574-021-00626-7. Epub 2022 Feb 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验