Suppr超能文献

实时可视化后锂离子电池电极的成核与生长。

Real-Time Visualizing Nucleation and Growth of Electrodes for Post-Lithium-Ion Batteries.

机构信息

Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.

出版信息

Acc Chem Res. 2023 Feb 21;56(4):440-451. doi: 10.1021/acs.accounts.2c00652. Epub 2023 Jan 23.

Abstract

ConspectusUntil recently, most studies on nucleation and growth mechanisms have employed electrochemical transient measurements, and numerous models have been established on various metal electrode elements. Contrary to the conventional tip-induced nucleation and growth model, a base-induced nucleation and growth mode was discovered not so long ago, which highlighted the importance of direct real-time observations such as visualization. As analysis techniques developed, diverse imaging methods have spurred the fundamental understanding of complex and dynamic battery electrochemistry. Experimental observations of alkali Li and Na metals are limited and difficult because their high reactivity makes not only the fabrication but also the analysis itself challenging. Na metal has high reactivity to electrolytes. Accordingly, it is difficult to visualize the Na deposition in real-time due to gas evolution and resolution limitation. Only a few studies have examined the Na deposition and dissolution reactions . It is generally believed that the Mg anode is free from the dendrite growth of Mg metal, and Mg deposition preferentially occurs along the surface direction. However, whether the Mg anode always follows the dendrite-free growth has currently become a controversial topic and is being discussed and redefined based on real-time imaging analyses. In addition, a variety of morphological evolutions in the metal anodes are required to be systematically distinguished by key parameters. Real-time imaging analysis can directly confirm the solid-liquid-solid multiphase conversion reactions of S and Se cathodes. S and Se elements belong to the same chalcogen group, but their crystal structures and morphological changes significantly differ in each electrode during deposition and dissolution reactions. Therefore, it is necessitated to discuss the nucleation and growth behaviors by examining intrinsic properties of each element in chalcogen cathodes. Considering that a mechanistic understanding of the Se cathode is in its infancy, its nucleation and growth behaviors must be further explored through fundamental studies. In this Account, we aim to discuss the nucleation and growth behaviors of metal (Li, Na, and Mg) anodes and chalcogen (S and Se) cathodes. To elucidate their nucleation and growth mechanisms, we overview the morphological evolutions on the electrode surface and interface by visualizations. Our recent studies covering Li, Na, Mg, S, and Se electrodes verified by X-ray imaging are used as critical resources in understanding their nucleation and growth behaviors. Overall, with validation of the complex and dynamic nucleation and growth behaviors of metal and chalcogen electrodes by visualization methods, we hope that this Account can contribute to supporting the fundamental knowledge for the development of high-energy-density metal and chalcogen electrodes.

摘要

概述

直到最近,大多数关于成核和生长机制的研究都采用了电化学瞬变测量方法,并且已经在各种金属电极元素上建立了许多模型。与传统的尖端诱导成核和生长模型相反,不久前发现了一种基底诱导的成核和生长模式,这凸显了直接实时观察(如可视化)的重要性。随着分析技术的发展,各种成像方法推动了对复杂和动态电池电化学的基础理解。对碱金属 Li 和 Na 的实验观察受到限制且困难,因为它们的高反应性不仅使制造过程而且使分析本身都具有挑战性。Na 金属与电解质有很高的反应性。因此,由于气体的产生和分辨率的限制,实时可视化 Na 的沉积变得困难。只有少数研究检查了 Na 的沉积和溶解反应。一般认为,Mg 阳极不会发生 Mg 金属的枝晶生长,并且 Mg 沉积优先沿表面方向发生。然而,Mg 阳极是否始终遵循无枝晶生长,目前已成为一个有争议的话题,并正在根据实时成像分析进行讨论和重新定义。此外,需要通过关键参数系统地区分金属阳极的各种形态演变。实时成像分析可以直接证实 S 和 Se 阴极的固-液-固多相转换反应。S 和 Se 元素属于同一硫族元素,但它们的晶体结构和形态在沉积和溶解反应中在每个电极中都有显著差异。因此,有必要通过检查硫族元素阴极的固有特性来讨论其成核和生长行为。考虑到 Se 阴极的成核和生长行为尚处于起步阶段,必须通过基础研究进一步探索其成核和生长行为。在本账户中,我们旨在讨论金属(Li、Na 和 Mg)阳极和硫族(S 和 Se)阴极的成核和生长行为。为了阐明它们的成核和生长机制,我们通过可视化来概述电极表面和界面的形态演变。我们最近的研究涵盖了 Li、Na、Mg、S 和 Se 电极,并通过 X 射线成像进行了验证,这些研究被用作理解它们成核和生长行为的关键资源。总的来说,通过可视化方法验证了金属和硫族电极复杂和动态的成核和生长行为,我们希望本账户能够有助于为高能密度金属和硫族电极的发展提供基础知识支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验