School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China.
School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China.
J Colloid Interface Sci. 2023 May;637:147-158. doi: 10.1016/j.jcis.2023.01.078. Epub 2023 Jan 18.
It is highly desirable, but challenging to develop multifunctional electromagnetic wave (EMW) absorbing material for practical applications in some harsh environments. Herein, we successfully embedded highly dispersed Co/CoS nanoparticles into a three-dimensional (3D) honeycomb porous carbon skeleton (the carbon skeleton is derived from longan shell-derived S, N co-doped porous carbon) as a multifunctional material with outstanding EMW absorption properties, hydrophobicity and corrosion resistance. Its superior versatility is attributed to synergistic effects of the S and N dopants, large specific surface area, abundant carbon defects, and 3D porous characteristics. Minimal reflection loss (RL) and efficient absorption bandwidth (EAB) of the optimized material as EMW absorbers can achieve -59.9 dB and 6.8 GHz at a thickness of 2.7 mm, respectively, which are superior to most of the reported carbon-based absorbents. Meanwhile, theoretical simulations of the radar scattering cross section (RCS) further confirm that this multifunctional material has outstanding EMW attenuation performance and actual application potential. In addition, the material possesses strong hydrophobicity (124°) and anti-corrosion properties, expanding the scope of potential applications of microwave absorbers. Therefore, this work provides an effective development strategy for the design of anti-corrosion, super-hydrophobic, and high-performance EMW absorbing materials.
开发多功能电磁波(EMW)吸收材料以满足一些恶劣环境下的实际应用需求是非常理想的,但极具挑战性。在此,我们成功地将高度分散的 Co/CoS 纳米颗粒嵌入到三维(3D)蜂窝状多孔碳骨架(该碳骨架是由龙眼壳衍生的 S、N 共掺杂多孔碳制备而成)中,得到了一种具有出色 EMW 吸收性能、疏水性和耐腐蚀性的多功能材料。其卓越的多功能性归因于 S 和 N 掺杂剂、大比表面积、丰富的碳缺陷和 3D 多孔特性的协同作用。作为 EMW 吸收剂,优化后的材料具有最小的反射损耗(RL)和有效的吸收带宽(EAB),在 2.7mm 的厚度下分别达到-59.9 dB 和 6.8 GHz,优于大多数已报道的基于碳的吸收剂。同时,雷达散射截面(RCS)的理论模拟进一步证实了这种多功能材料具有出色的 EMW 衰减性能和实际应用潜力。此外,该材料具有很强的疏水性(124°)和耐腐蚀性,扩大了微波吸收剂的潜在应用范围。因此,这项工作为设计耐腐蚀、超疏水和高性能 EMW 吸收材料提供了一种有效的开发策略。