多供应商全自动不确定性管理方法,用于直观表示 OCT 图像中的 DME 液体积聚。
Multivendor fully automatic uncertainty management approaches for the intuitive representation of DME fluid accumulations in OCT images.
机构信息
Centro de investigación CITIC, Universidade da Coruña, Campus de Elviña, s/n, A Coruña, 15071, Galicia, Spain.
Grupo VARPA, Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, Xubias de Arriba, 84, A Coruña, 15006, Galicia, Spain.
出版信息
Med Biol Eng Comput. 2023 May;61(5):1209-1224. doi: 10.1007/s11517-022-02765-z. Epub 2023 Jan 24.
Diabetes represents one of the main causes of blindness in developed countries, caused by fluid accumulations in the retinal layers. The clinical literature defines the different types of diabetic macular edema (DME) as cystoid macular edema (CME), diffuse retinal thickening (DRT), and serous retinal detachment (SRD), each with its own clinical relevance. These fluid accumulations do not present defined borders that facilitate segmentational approaches (specially the DRT type, usually not taken into account by the state of the art for this reason) so a diffuse paradigm is used for its detection and visualization. In this paper, we propose three novel approaches for the representation and characterization of these types of DME. A baseline proposal, using a convolutional neural network as backbone, another based on transfer learning from a general domain, and a third approach exploiting information of regions without a defined label. Overall, our baseline proposal obtained an AUC of 0.9583 ± 0.0093, the approach pretrained with a general-domain dataset an AUC of 0.9603 ± 0.0087, and the approach pretrained in the domain taking advantage of uncertainty, an AUC of 0.9619 ± 0.0073.
糖尿病是发达国家致盲的主要原因之一,其病因是视网膜层中液体的积聚。临床文献将不同类型的糖尿病性黄斑水肿 (DME) 定义为囊样黄斑水肿 (CME)、弥漫性视网膜增厚 (DRT) 和浆液性视网膜脱离 (SRD),每种类型都有其自身的临床意义。这些液体积聚没有明确的边界,这使得分段方法变得困难(特别是 DRT 类型,由于这个原因,通常不被现有技术所考虑),因此通常使用弥漫性方法来检测和可视化。在本文中,我们提出了三种新的方法来表示和表征这些类型的 DME。基线方案使用卷积神经网络作为骨干网络,另一种方案基于从通用领域的迁移学习,第三种方案利用无明确标签区域的信息。总的来说,我们的基线方案的 AUC 为 0.9583 ± 0.0093,使用通用领域数据集进行预训练的方案的 AUC 为 0.9603 ± 0.0087,利用不确定性进行预训练的方案的 AUC 为 0.9619 ± 0.0073。