文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度学习的 OCT 扫描中多类视网膜液性病变的联合分割和特征提取,用于抗 VEGF 治疗的临床应用。

Deep learning based joint segmentation and characterization of multi-class retinal fluid lesions on OCT scans for clinical use in anti-VEGF therapy.

机构信息

School of Automation Science and Electrical Engineering, Beihang University (BUAA), Beijing, 100191, China.

School of Automation Science and Electrical Engineering, Beihang University (BUAA), Beijing, 100191, China; School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan, 523808, China.

出版信息

Comput Biol Med. 2021 Sep;136:104727. doi: 10.1016/j.compbiomed.2021.104727. Epub 2021 Aug 4.


DOI:10.1016/j.compbiomed.2021.104727
PMID:34385089
Abstract

BACKGROUND: In anti-vascular endothelial growth factor (anti-VEGF) therapy, an accurate estimation of multi-class retinal fluid (MRF) is required for the activity prescription and intravitreal dose. This study proposes an end-to-end deep learning-based retinal fluids segmentation network (RFS-Net) to segment and recognize three MRF lesion manifestations, namely, intraretinal fluid (IRF), subretinal fluid (SRF), and pigment epithelial detachment (PED), from multi-vendor optical coherence tomography (OCT) imagery. The proposed image analysis tool will optimize anti-VEGF therapy and contribute to reducing the inter- and intra-observer variability. METHOD: The proposed RFS-Net architecture integrates the atrous spatial pyramid pooling (ASPP), residual, and inception modules in the encoder path to learn better features and conserve more global information for precise segmentation and characterization of MRF lesions. The RFS-Net model is trained and validated using OCT scans from multiple vendors (Topcon, Cirrus, Spectralis), collected from three publicly available datasets. The first dataset consisted of OCT volumes obtained from 112 subjects (a total of 11,334 B-scans) is used for both training and evaluation purposes. Moreover, the remaining two datasets are only used for evaluation purposes to check the trained RFS-Net's generalizability on unseen OCT scans. The two evaluation datasets contain a total of 1572 OCT B-scans from 1255 subjects. The performance of the proposed RFS-Net model is assessed through various evaluation metrics. RESULTS: The proposed RFS-Net model achieved the mean F scores of 0.762, 0.796, and 0.805 for segmenting IRF, SRF, and PED. Moreover, with the automated segmentation of the three retinal manifestations, the RFS-Net brings a considerable gain in efficiency compared to the tedious and demanding manual segmentation procedure of the MRF. CONCLUSIONS: Our proposed RFS-Net is a potential diagnostic tool for the automatic segmentation of MRF (IRF, SRF, and PED) lesions. It is expected to strengthen the inter-observer agreement, and standardization of dosimetry is envisaged as a result.

摘要

背景:在抗血管内皮生长因子(anti-VEGF)治疗中,需要准确估计多类视网膜液(MRF),以确定治疗活动和玻璃体内剂量。本研究提出了一种基于端到端深度学习的视网膜液分割网络(RFS-Net),用于从多供应商光学相干断层扫描(OCT)图像中分割和识别三种 MRF 病变表现,即视网膜内液(IRF)、视网膜下液(SRF)和色素上皮脱离(PED)。所提出的图像分析工具将优化抗 VEGF 治疗,并有助于减少观察者间和观察者内的变异性。

方法:所提出的 RFS-Net 架构在编码器路径中集成了空洞空间金字塔池化(ASPP)、残差和 inception 模块,以学习更好的特征,并保留更多的全局信息,从而更精确地分割和描述 MRF 病变。该 RFS-Net 模型使用来自多个供应商(Topcon、Cirrus、Spectralis)的 OCT 扫描进行训练和验证,这些扫描来自三个公开可用的数据集。第一个数据集由来自 112 个受试者(总共 11334 个 B 扫描)的 OCT 体积组成,用于训练和评估目的。此外,其余两个数据集仅用于评估目的,以检查在未见的 OCT 扫描上训练的 RFS-Net 的泛化能力。这两个评估数据集共包含来自 1255 个受试者的 1572 个 OCT B 扫描。通过各种评估指标评估所提出的 RFS-Net 模型的性能。

结果:所提出的 RFS-Net 模型在分割 IRF、SRF 和 PED 方面的平均 F 分数分别为 0.762、0.796 和 0.805。此外,通过对三种视网膜表现的自动分割,与 MRF 的繁琐和要求高的手动分割过程相比,RFS-Net 带来了相当大的效率提高。

结论:我们提出的 RFS-Net 是一种用于自动分割 MRF(IRF、SRF 和 PED)病变的潜在诊断工具。预计它将增强观察者间的一致性,并期望实现剂量学的标准化。

相似文献

[1]
Deep learning based joint segmentation and characterization of multi-class retinal fluid lesions on OCT scans for clinical use in anti-VEGF therapy.

Comput Biol Med. 2021-9

[2]
Automatic segmentation of multitype retinal fluid from optical coherence tomography images using semisupervised deep learning network.

Br J Ophthalmol. 2023-9

[3]
RetFluidNet: Retinal Fluid Segmentation for SD-OCT Images Using Convolutional Neural Network.

J Digit Imaging. 2021-6

[4]
Performance of retinal fluid monitoring in OCT imaging by automated deep learning versus human expert grading in neovascular AMD.

Eye (Lond). 2023-12

[5]
Automated Segmentation of Lesions Including Subretinal Hyperreflective Material in Neovascular Age-related Macular Degeneration.

Am J Ophthalmol. 2018-4-12

[6]
Evaluation of Automated Multiclass Fluid Segmentation in Optical Coherence Tomography Images Using the Pegasus Fluid Segmentation Algorithms.

Transl Vis Sci Technol. 2021-1-4

[7]
Application of Automated Quantification of Fluid Volumes to Anti-VEGF Therapy of Neovascular Age-Related Macular Degeneration.

Ophthalmology. 2020-3-16

[8]
Automated Quantification of Pathological Fluids in Neovascular Age-Related Macular Degeneration, and Its Repeatability Using Deep Learning.

Transl Vis Sci Technol. 2021-4-1

[9]
Deep learning architectures analysis for age-related macular degeneration segmentation on optical coherence tomography scans.

Comput Methods Programs Biomed. 2020-10

[10]
Automated Segmentation of Retinal Fluid Volumes From Structural and Angiographic Optical Coherence Tomography Using Deep Learning.

Transl Vis Sci Technol. 2020-10-8

引用本文的文献

[1]
Radiomics-Based OCT Analysis of Choroid Reveals Biomarkers of Central Serous Chorioretinopathy.

Transl Vis Sci Technol. 2025-4-1

[2]
HDL-ACO hybrid deep learning and ant colony optimization for ocular optical coherence tomography image classification.

Sci Rep. 2025-2-18

[3]
Radiomics-Based Prediction of Anti-VEGF Treatment Response in Neovascular Age-Related Macular Degeneration With Pigment Epithelial Detachment.

Transl Vis Sci Technol. 2023-10-3

[4]
Semi-supervised OCT lesion segmentation via transformation-consistent with uncertainty and self-deep supervision.

Biomed Opt Express. 2023-6-30

[5]
Deep learning in optical coherence tomography: Where are the gaps?

Clin Exp Ophthalmol. 2023-11

[6]
On Machine Learning in Clinical Interpretation of Retinal Diseases Using OCT Images.

Bioengineering (Basel). 2023-3-24

[7]
An Automatic Image Processing Method Based on Artificial Intelligence for Locating the Key Boundary Points in the Central Serous Chorioretinopathy Lesion Area.

Comput Intell Neurosci. 2023

[8]
Multivendor fully automatic uncertainty management approaches for the intuitive representation of DME fluid accumulations in OCT images.

Med Biol Eng Comput. 2023-5

[9]
A vision transformer architecture for the automated segmentation of retinal lesions in spectral domain optical coherence tomography images.

Sci Rep. 2023-1-10

[10]
Predictive, preventive, and personalized management of retinal fluid via computer-aided detection app for optical coherence tomography scans.

EPMA J. 2022-11-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索