Molecular Genetics Department, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstrasse, 06466 Seeland-Gatersleben, Germany.
University of Florida, Horticultural Sciences Department, Fifield Hall, 2550 Hull Rd., PO Box 110690, Gainesville, Florida, 32611, USA.
Plant Physiol. 2023 May 31;192(2):1268-1288. doi: 10.1093/plphys/kiad038.
Maize (Zea mays) kernels are the largest cereal grains, and their endosperm is severely oxygen deficient during grain fill. The causes, dynamics, and mechanisms of acclimation to hypoxia are minimally understood. Here, we demonstrate that hypoxia develops in the small, growing endosperm, but not the nucellus, and becomes the standard state, regardless of diverse structural and genetic perturbations in modern maize (B73, popcorn, sweet corn), mutants (sweet4c, glossy6, waxy), and non-domesticated wild relatives (teosintes and Tripsacum species). We also uncovered an interconnected void space at the chalazal pericarp, providing superior oxygen supply to the placental tissues and basal endosperm transfer layer. Modeling indicated a very high diffusion resistance inside the endosperm, which, together with internal oxygen consumption, could generate steep oxygen gradients at the endosperm surface. Manipulation of oxygen supply induced reciprocal shifts in gene expression implicated in controlling mitochondrial functions (23.6 kDa Heat-Shock Protein, Voltage-Dependent Anion Channel 2) and multiple signaling pathways (core hypoxia genes, cyclic nucleotide metabolism, ethylene synthesis). Metabolite profiling revealed oxygen-dependent shifts in mitochondrial pathways, ascorbate metabolism, starch synthesis, and auxin degradation. Long-term elevated oxygen supply enhanced the rate of kernel development. Altogether, evidence here supports a mechanistic framework for the establishment of and acclimation to hypoxia in the maize endosperm.
玉米(Zea mays)籽粒是最大的谷物,在籽粒灌浆期间,其胚乳严重缺氧。对于适应低氧的原因、动态和机制,人们知之甚少。在这里,我们证明了缺氧发生在小的、生长的胚乳中,但不在珠心组织中,并且成为标准状态,无论现代玉米(B73、爆米花、甜玉米)、突变体(甜 4c、glossy6、waxy)和非驯化的野生近缘种(teosintes 和 Tripsacum 种)的结构和遗传扰动如何多样化。我们还揭示了在合点珠被的互联空隙空间,为胎盘组织和基底部胚乳转移层提供了卓越的氧气供应。建模表明胚乳内部的扩散阻力非常高,再加上内部氧气消耗,可能会在胚乳表面产生陡峭的氧气梯度。氧气供应的操纵诱导了控制线粒体功能(23.6 kDa 热休克蛋白、电压依赖性阴离子通道 2)和多种信号通路(核心低氧基因、环核苷酸代谢、乙烯合成)的基因表达的相互转移。代谢物分析揭示了线粒体途径、抗坏血酸代谢、淀粉合成和生长素降解的氧气依赖性变化。长期升高的氧气供应增强了籽粒发育的速度。总之,这里的证据支持了玉米胚乳中低氧建立和适应的机制框架。