State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China.
BMC Plant Biol. 2024 May 27;24(1):458. doi: 10.1186/s12870-024-05163-9.
The endosperm serves as the primary source of nutrients for maize (Zea mays L.) kernel embryo development and germination. Positioned at the base of the endosperm, the transfer cells (TCs) of the basal endosperm transfer layer (BETL) generate cell wall ingrowths, which enhance the connectivity between the maternal plant and the developing kernels. These TCs play a crucial role in nutrient transport and defense against pathogens. The molecular mechanism underlying BETL development in maize remains unraveled.
This study demonstrated that the MYB-related transcription factor ZmMYBR29, exhibited specific expression in the basal cellularized endosperm, as evidenced by in situ hybridization analysis. Utilizing the CRISPR/Cas9 system, we successfully generated a loss-of-function homozygous zmmybr29 mutant, which presented with smaller kernel size. Observation of histological sections revealed abnormal development and disrupted morphology of the cell wall ingrowths in the BETL. The average grain filling rate decreased significantly by 26.7% in zmmybr29 mutant in comparison to the wild type, which impacted the dry matter accumulation within the kernels and ultimately led to a decrease in grain weight. Analysis of RNA-seq data revealed downregulated expression of genes associated with starch synthesis and carbohydrate metabolism in the mutant. Furthermore, transcriptomic profiling identified 23 genes that expressed specifically in BETL, and the majority of these genes exhibited altered expression patterns in zmmybr29 mutant.
In summary, ZmMYBR29 encodes a MYB-related transcription factor that is expressed specifically in BETL, resulting in the downregulation of genes associated with kernel development. Furthermore, ZmMYBR29 influences kernels weight by affecting the grain filling rate, providing a new perspective for the complementation of the molecular regulatory network in maize endosperm development.
胚乳是玉米(Zea mays L.)籽粒胚乳发育和萌发的主要营养来源。位于胚乳底部的基础胚乳传递层(BETL)的传递细胞(TCs)产生细胞壁内突,增强了母体植物与发育中的籽粒之间的连通性。这些 TCs 在营养物质运输和抵御病原体方面发挥着关键作用。玉米 BETL 发育的分子机制尚不清楚。
本研究表明,MYB 相关转录因子 ZmMYBR29 在基础细胞化胚乳中特异性表达,通过原位杂交分析得到证实。利用 CRISPR/Cas9 系统,我们成功地产生了一个功能丧失的纯合 zmmybr29 突变体,其籽粒较小。观察组织切片发现 BETL 中的细胞壁内突发育异常,形态破坏。与野生型相比,zmmybr29 突变体的平均籽粒灌浆速率显著下降了 26.7%,这影响了籽粒内干物质的积累,最终导致籽粒重量下降。RNA-seq 数据分析显示,突变体中与淀粉合成和碳水化合物代谢相关的基因表达下调。此外,转录组分析鉴定了 23 个在 BETL 中特异性表达的基因,其中大多数基因在 zmmybr29 突变体中的表达模式发生了改变。
综上所述,ZmMYBR29 编码一个 MYB 相关转录因子,在 BETL 中特异性表达,导致与籽粒发育相关的基因下调。此外,ZmMYBR29 通过影响籽粒灌浆速率影响籽粒重量,为补充玉米胚乳发育的分子调控网络提供了新视角。