Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay.
Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
Sci Signal. 2023 Jan 24;16(769):eabo7588. doi: 10.1126/scisignal.abo7588.
Phosphorylation carries chemical information in biological systems. In two-component systems (TCSs), the sensor histidine kinase and the response regulator are connected through phosphoryl transfer reactions that may be uni- or bidirectional. Directionality enables the construction of complex regulatory networks that optimize signal propagation and ensure the forward flow of information. We combined x-ray crystallography, hybrid quantum mechanics/molecular mechanics (QM/MM) simulations, and systems-integrative kinetic modeling approaches to study phosphoryl flow through the thermosensing TCS DesK-DesR. The allosteric regulation of the histidine kinase DesK was critical to avoid back transfer of phosphoryl groups and futile phosphorylation-dephosphorylation cycles by isolating phosphatase, autokinase, and phosphotransferase activities. Interactions between the kinase's ATP-binding domain and the regulator's receiver domain placed the regulator in two distinct positions in the phosphotransferase and phosphatase complexes, thereby determining whether a key glutamine residue in DesK was properly situated to assist in the dephosphorylation reaction. Moreover, an energetically unfavorable phosphotransferase conformation when DesK was not phosphorylated minimized reverse phosphoryl transfer. DesR dimerization and a dissociative phosphoryl transfer reaction also enforced the direction of phosphoryl flow. Shorter or longer distances between the phosphoryl acceptor and donor residues shifted the phosphoryl transfer equilibrium by modulating the stabilizing effect of the Mg cofactor. These mechanisms control the directionality of signal transmission and show how structure-encoded allostery stores and transmits information in signaling systems.
磷酸化在生物系统中携带化学信息。在双组分系统 (TCS) 中,传感器组氨酸激酶和响应调节器通过磷酸转移反应连接,这些反应可能是单向或双向的。方向性使构建复杂的调节网络成为可能,这些网络优化了信号传播并确保了信息的正向流动。我们结合了 X 射线晶体学、混合量子力学/分子力学 (QM/MM) 模拟和系统综合动力学建模方法来研究通过热感 TCS DesK-DesR 的磷酸化流。组氨酸激酶 DesK 的变构调节对于避免磷酸基团的反向转移和无用的磷酸化-去磷酸化循环至关重要,方法是隔离磷酸酶、自激酶和磷酸转移酶活性。激酶的 ATP 结合域与调节剂的受体域之间的相互作用将调节剂置于磷酸转移酶和磷酸酶复合物中的两个不同位置,从而确定 DesK 中的关键谷氨酰胺残基是否适当地协助去磷酸化反应。此外,当 DesK 未磷酸化时,能量不利的磷酸转移酶构象最小化了反向磷酸转移。DesR 二聚化和解离的磷酸转移反应也强制磷酸化流的方向。磷酸化接受体和供体残基之间的较短或较长距离通过调节 Mg 辅助因子的稳定作用来改变磷酸转移平衡。这些机制控制信号传递的方向性,并展示了结构编码的变构如何在信号系统中存储和传递信息。