Suppr超能文献

组氨酸激酶的激活及自身磷酸化机制

Mechanism of activation and autophosphorylation of a histidine kinase.

作者信息

Kansari Mayukh, Idiris Fathia, Szurmant Hendrik, Kubař Tomáš, Schug Alexander

机构信息

Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany.

Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Karlsruhe, Germany.

出版信息

Commun Chem. 2024 Sep 3;7(1):196. doi: 10.1038/s42004-024-01272-6.

Abstract

Histidine kinases (HK) are one of the main prokaryotic signaling systems. Two structurally conserved catalytic domains inside the HK enable autokinase, phosphotransfer, and phosphatase activities. Here, we focus on a detailed mechanistic understanding of the functional cycle of the WalK HK by a multi-scale simulation approach, consisting of classical as well as hybrid QM/MM molecular dynamics simulation. Strikingly, a conformational transition induced solely in DHp leads to the correct activated conformation in CA crucial for autophosphorylation. This finding explains how variable sensor domains induce the transition from inactive to active state. The subsequent autophosphorylation inside DHp proceeds via a penta-coordinated transition state to a protonated phosphohistidine intermediate. This intermediate is consequently deprotonated by a suitable nearby base. The reaction energetics are controlled by the final proton acceptor and presence of a magnesium cation. The slow rates of the process result from the high energy barrier of the conformational transition between inactive and active states. The phosphorylation step exhibits a lower barrier and down-the-hill energetics. Thus, our work suggests a detailed mechanistic model for HK autophosphorylation.

摘要

组氨酸激酶(HK)是原核生物主要的信号系统之一。HK内部的两个结构保守的催化结构域具有自身磷酸化、磷酸转移和磷酸酶活性。在此,我们通过多尺度模拟方法,包括经典分子动力学模拟以及混合量子力学/分子力学分子动力学模拟,着重对WalK HK功能循环进行详细的机理理解。引人注目的是,仅在DHp中诱导的构象转变会导致CA中对于自身磷酸化至关重要的正确活化构象。这一发现解释了可变传感器结构域如何诱导从无活性状态到活性状态的转变。随后,DHp内部的自身磷酸化通过五配位过渡态进行,生成质子化的磷酸组氨酸中间体。该中间体随后被附近合适的碱基去质子化。反应能量学由最终的质子受体和镁阳离子的存在控制。该过程的缓慢速率源于无活性状态和活性状态之间构象转变的高能量屏障。磷酸化步骤呈现较低的屏障和下坡能量学。因此,我们的工作提出了一个关于HK自身磷酸化的详细机理模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/296d/11371814/2b51949ef95f/42004_2024_1272_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验