Suppr超能文献

免疫特征可预测癌症患者接受免疫检查点抑制剂治疗后发生自身免疫毒性的情况。

Immune signatures predict development of autoimmune toxicity in patients with cancer treated with immune checkpoint inhibitors.

机构信息

Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.

Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St.Gallen, Switzerland.

出版信息

Med. 2023 Feb 10;4(2):113-129.e7. doi: 10.1016/j.medj.2022.12.007. Epub 2023 Jan 23.

Abstract

BACKGROUND

Immune checkpoint inhibitors (ICIs) are among the most promising treatment options for melanoma and non-small cell lung cancer (NSCLC). While ICIs can induce effective anti-tumor responses, they may also drive serious immune-related adverse events (irAEs). Identifying biomarkers to predict which patients will suffer from irAEs would enable more accurate clinical risk-benefit analysis for ICI treatment and may also shed light on common or distinct mechanisms underpinning treatment success and irAEs.

METHODS

In this prospective multi-center study, we combined a multi-omics approach including unbiased single-cell profiling of over 300 peripheral blood mononuclear cell (PBMC) samples and high-throughput proteomics analysis of over 500 serum samples to characterize the systemic immune compartment of patients with melanoma or NSCLC before and during treatment with ICIs.

FINDINGS

When we combined the parameters obtained from the multi-omics profiling of patient blood and serum, we identified potential predictive biomarkers for ICI-induced irAEs. Specifically, an early increase in CXCL9/CXCL10/CXCL11 and interferon-γ (IFN-γ) 1 to 2 weeks after the start of therapy are likely indicators of heightened risk of developing irAEs. In addition, an early expansion of Ki-67 regulatory T cells (Tregs) and Ki-67 CD8 T cells is also likely to be associated with increased risk of irAEs.

CONCLUSIONS

We suggest that the combination of these cellular and proteomic biomarkers may help to predict which patients are likely to benefit most from ICI therapy and those requiring intensive monitoring for irAEs.

FUNDING

This work was primarily funded by the European Research Council, the Swiss National Science Foundation, the Swiss Cancer League, and the Forschungsförderung of the Kantonsspital St. Gallen.

摘要

背景

免疫检查点抑制剂(ICIs)是治疗黑色素瘤和非小细胞肺癌(NSCLC)最有前途的治疗选择之一。虽然 ICI 可以诱导有效的抗肿瘤反应,但它们也可能引发严重的免疫相关不良事件(irAEs)。确定预测哪些患者会发生 irAEs 的生物标志物,将使 ICI 治疗的临床风险效益分析更加准确,也可能揭示治疗成功和 irAEs 背后的常见或独特机制。

方法

在这项前瞻性多中心研究中,我们结合了一种多组学方法,包括对 300 多个外周血单核细胞(PBMC)样本进行无偏单细胞分析,以及对 500 多个血清样本进行高通量蛋白质组学分析,以描绘接受 ICI 治疗前后黑色素瘤或 NSCLC 患者的全身免疫细胞群。

发现

当我们将患者血液和血清的多组学分析参数结合起来时,我们确定了预测 ICI 诱导的 irAEs 的潜在生物标志物。具体来说,在治疗开始后 1 至 2 周内,CXCL9/CXCL10/CXCL11 和干扰素-γ(IFN-γ)的早期增加可能是发生 irAEs 风险增加的指标。此外,Ki-67 调节性 T 细胞(Tregs)和 Ki-67 CD8 T 细胞的早期扩增也可能与 irAEs 风险增加相关。

结论

我们建议,这些细胞和蛋白质组学生物标志物的组合可能有助于预测哪些患者最有可能从 ICI 治疗中受益最大,以及哪些患者需要对 irAEs 进行密集监测。

资金

这项工作主要由欧洲研究理事会、瑞士国家科学基金会、瑞士癌症联盟和圣加仑州医院研究促进基金资助。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验