文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

室温量子干涉在分子结中的特征。

Signatures of Room-Temperature Quantum Interference in Molecular Junctions.

机构信息

Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012Bern, Switzerland.

Quantum Technology Centre, Physics Department, Lancaster University, LancasterLA1 4YB, United Kingdom.

出版信息

Acc Chem Res. 2023 Feb 7;56(3):322-331. doi: 10.1021/acs.accounts.2c00726. Epub 2023 Jan 24.


DOI:10.1021/acs.accounts.2c00726
PMID:36693627
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9910048/
Abstract

ConspectusDuring the past decade or so, research groups around the globe have sought to answer the question: "How does electricity flow through single molecules?" In seeking the answer to this question, a series of joint theory and experimental studies have demonstrated that electrons passing through single-molecule junctions exhibit exquisite quantum interference (QI) effects, which have no classical analogues in conventional circuits. These signatures of QI appear even at room temperature and can be described by simple quantum circuit rules and a rather intuitive magic ratio theory. The latter describes the effect of varying the connectivity of electrodes to a molecular core and how electrical conductance can be controlled by the addition of heteroatoms to molecular cores. The former describes how individual moieties contribute to the overall conductance of a molecule and how the overall conductance can change when the connectivities between different moieties are varied. Related circuit rules have been derived and demonstrated, which describe the effects of connectivity on Seebeck coefficients of organic molecules. This simplicity arises because when a molecule is placed between two electrodes, charge transfer between the molecule and electrodes causes the molecular energy levels to adjust, such that the Fermi energy () of the electrodes lies within the energy gap between the highest occupied molecular orbital and lowest unoccupied molecular orbital. Consequently, when electrons of energy pass through a molecule, their phase is protected and transport takes place via phase-coherent tunneling. Remarkably, these effects have been scaled up to self-assembled monolayers of molecules, thereby creating two-dimensional materials, whose room temperature transport properties are controlled by QI. This leads to new molecular design strategies for increasing the on/off conductance ratio of molecular switches and to improving the performance of organic thermoelectric materials. In particular, destructive quantum interference has been shown to improve the Seebeck coefficient of organic molecules and increase their on/off ratio under the influence of electrochemical gating. The aim of this Account is to introduce the novice reader to these signatures of QI in molecules, many of which have been identified in joint studies involving our theory group in Lancaster University and experimental group in Bern University.

摘要

概述

在过去的十年左右,全球的研究团队一直在努力回答一个问题:“电子如何在单个分子中流动?”为了回答这个问题,一系列理论和实验联合研究表明,通过单分子结的电子表现出精细的量子干涉(QI)效应,这在传统电路中没有类似的经典模拟。这些 QI 的特征甚至在室温下也很明显,可以用简单的量子电路规则和相当直观的魔术比率理论来描述。后者描述了改变分子核心与电极的连接性的效果,以及如何通过向分子核心添加杂原子来控制电导率。前者描述了各个部分如何对分子的整体电导率做出贡献,以及当不同部分之间的连接性发生变化时,整体电导率如何变化。已经得出并证明了相关的电路规则,这些规则描述了连接性对有机分子的塞贝克系数的影响。这种简单性源于当分子置于两个电极之间时,分子和电极之间的电荷转移导致分子能级调整,使得电极的费米能()落在最高占据分子轨道和最低未占据分子轨道之间的能隙内。因此,当能量为 的电子通过分子时,它们的相位受到保护,并且通过相位相干隧穿进行输运。值得注意的是,这些效应已经扩展到分子的自组装单层,从而创造了二维材料,其室温输运性质受 QI 控制。这为增加分子开关的导通/关断电导率比和提高有机热电材料的性能提供了新的分子设计策略。特别是,已经表明破坏性量子干涉可以提高有机分子的塞贝克系数,并在电化学门控的影响下增加其导通/关断比。本文的目的是向新手读者介绍分子中的这些 QI 特征,其中许多特征是在兰卡斯特大学的理论小组和伯尔尼大学的实验小组的联合研究中确定的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4449/9910048/54ca66b03e3d/ar2c00726_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4449/9910048/2a017c12a00c/ar2c00726_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4449/9910048/a075a79d0182/ar2c00726_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4449/9910048/85ddc5ee70c5/ar2c00726_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4449/9910048/d473e178aab5/ar2c00726_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4449/9910048/23b5434d8937/ar2c00726_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4449/9910048/f3a481157b17/ar2c00726_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4449/9910048/4feb369b701f/ar2c00726_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4449/9910048/2995689680c9/ar2c00726_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4449/9910048/e4ee0706f6cd/ar2c00726_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4449/9910048/07bd463437e5/ar2c00726_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4449/9910048/54ca66b03e3d/ar2c00726_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4449/9910048/2a017c12a00c/ar2c00726_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4449/9910048/a075a79d0182/ar2c00726_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4449/9910048/85ddc5ee70c5/ar2c00726_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4449/9910048/d473e178aab5/ar2c00726_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4449/9910048/23b5434d8937/ar2c00726_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4449/9910048/f3a481157b17/ar2c00726_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4449/9910048/4feb369b701f/ar2c00726_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4449/9910048/2995689680c9/ar2c00726_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4449/9910048/e4ee0706f6cd/ar2c00726_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4449/9910048/07bd463437e5/ar2c00726_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4449/9910048/54ca66b03e3d/ar2c00726_0011.jpg

相似文献

[1]
Signatures of Room-Temperature Quantum Interference in Molecular Junctions.

Acc Chem Res. 2023-2-7

[2]
Scale-Up of Room-Temperature Constructive Quantum Interference from Single Molecules to Self-Assembled Molecular-Electronic Films.

J Am Chem Soc. 2020-5-13

[3]
On the resilience of magic number theory for conductance ratios of aromatic molecules.

Sci Rep. 2019-3-5

[4]
Quantum Interference Effects in Charge Transport through Single-Molecule Junctions: Detection, Manipulation, and Application.

Acc Chem Res. 2019-1-15

[5]
Conformation and Quantum-Interference-Enhanced Thermoelectric Properties of Diphenyl Diketopyrrolopyrrole Derivatives.

ACS Sens. 2021-2-26

[6]
Exploring the thermoelectric properties of oligo(phenylene-ethynylene) derivatives.

Nanoscale. 2020-7-23

[7]
Quantum and Phonon Interference-Enhanced Molecular-Scale Thermoelectricity.

J Phys Chem C Nanomater Interfaces. 2019-5-23

[8]
A Magic Ratio Rule for Beginners: A Chemist's Guide to Quantum Interference in Molecules.

Chemistry. 2018-3-20

[9]
Heteroatom Effects on Quantum Interference in Molecular Junctions: Modulating Antiresonances by Molecular Design.

J Phys Chem C Nanomater Interfaces. 2021-8-12

[10]
Turning the Tap: Conformational Control of Quantum Interference to Modulate Single-Molecule Conductance.

Angew Chem Int Ed Engl. 2019-12-19

引用本文的文献

[1]
Quantum Oncology: The Applications of Quantum Computing in Cancer Research.

J Med Syst. 2025-7-23

[2]
Reversible formation and control of linear conjugation in polymers.

Nat Chem. 2025-6-19

[3]
Does Kirchhoff's Law Work in Molecular-Scale Structures?

ACS Omega. 2025-2-27

[4]
Electron transport through two interacting channels in Azurin-based solid-state junctions.

Proc Natl Acad Sci U S A. 2024-8-13

[5]
Three distinct conductance states in polycyclic aromatic hydrocarbon derivatives.

R Soc Open Sci. 2024-6-12

[6]
Orientational Effects and Molecular-Scale Thermoelectricity Control.

ACS Omega. 2024-6-26

[7]
Signatures of Topological States in Conjugated Macrocycles.

Nano Lett. 2024-4-9

[8]
Quantum Computing in the Next-Generation Computational Biology Landscape: From Protein Folding to Molecular Dynamics.

Mol Biotechnol. 2024-2

本文引用的文献

[1]
Quantum Circuit Rules for Molecular Electronic Systems: Where Are We Headed Based on the Current Understanding of Quantum Interference, Thermoelectric, and Molecular Spintronics Phenomena?

Nano Lett. 2021-10-27

[2]
Optimised power harvesting by controlling the pressure applied to molecular junctions.

Chem Sci. 2021-3-4

[3]
Optically Controlled Electron Transfer in a Re Complex.

Chemistry. 2021-3-22

[4]
Chemical control of photoinduced charge-transfer direction in a tetrathiafulvalene-fused dipyrrolylquinoxaline difluoroborate dyad.

Chem Commun (Camb). 2020-10-9

[5]
Tuning the thermoelectrical properties of anthracene-based self-assembled monolayers.

Chem Sci. 2020-6-22

[6]
Scale-Up of Room-Temperature Constructive Quantum Interference from Single Molecules to Self-Assembled Molecular-Electronic Films.

J Am Chem Soc. 2020-5-13

[7]
Constructive Quantum Interference in Single-Molecule Benzodichalcogenophene Junctions.

Chemistry. 2020-4-21

[8]
Observing Donor-to-Acceptor Electron-Transfer Rates and the Marcus Inverted Parabola in Molecular Junctions.

J Phys Chem B. 2019-11-14

[9]
Dirac-cone induced gating enhancement in single-molecule field-effect transistors.

Nanoscale. 2019-7-11

[10]
Nanographene favors electronic interactions with an electron acceptor rather than an electron donor in a planar fused push-pull conjugate.

Nanoscale. 2019-1-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索