Suppr超能文献

量子与声子干涉增强的分子尺度热电效应

Quantum and Phonon Interference-Enhanced Molecular-Scale Thermoelectricity.

作者信息

Sadeghi Hatef

机构信息

Physics Department, Lancaster University, Lancaster LA1 4YB, U.K.

出版信息

J Phys Chem C Nanomater Interfaces. 2019 May 23;123(20):12556-12562. doi: 10.1021/acs.jpcc.8b12538. Epub 2019 May 14.

Abstract

Simultaneous engineering of electron and phonon transport through nanoscale molecular junctions is fundamental to the development of high-performance thermoelectric materials for the conversion of waste heat into electricity and cooling. Here, we demonstrate a systematic improvement of the room-temperature thermoelectric figure of merit () of molecular junctions. This is achieved by phonon interference (PI)-suppressed thermal conductance and quantum interference-enhanced electrical conductance and Seebeck coefficient. This strategy leads to a significant enhancement of from low values ca. 10 in oligo(phenylene-ethynylene) (OPE2) to the record values of 2.4 in dinitro-functionalized OPE2 (DOPE2). The dinitro functionalization also considerably enhances of biphenyl-dithiol (BDT) and bipyridyl molecular junctions. Remarkably, the energy levels of electron-withdrawing nitro groups are hardly changed from one molecule to the other. Because of this generic feature, a resonance transport in the vicinity of Fermi energy of electrodes is formed leading to a significant improvement of Seebeck coefficient and of all derivatives. For example, the Seebeck coefficient enhances from 10.8 μV/K in BDT to -470 μV/K in dinitro-BDT (DBDT). In addition, destructive PI due to the nitro groups suppresses phonon thermal conductance, for example, from 20 pW/K in BDT to 11 pW/K in DBDT at room temperature. We also demonstrate that quantum and PI-enhanced single-molecule thermoelectric efficiency is conserved when parallel molecules are placed between gold electrodes. These results promise to remove the key roadblocks and open new avenues to exploit functionalized organic molecules for thermoelectric energy harvesting and cooling.

摘要

通过纳米级分子结同时调控电子和声子输运,对于开发将废热转化为电能和用于制冷的高性能热电材料至关重要。在此,我们展示了分子结室温热电优值()的系统性提升。这是通过声子干涉(PI)抑制热导以及量子干涉增强电导和塞贝克系数来实现的。该策略使从低至约10的寡聚(亚苯基乙炔)(OPE2)中的值显著提高到二硝基功能化OPE2(DOPE2)中的创纪录值2.4。二硝基功能化还显著提高了联苯二硫醇(BDT)和联吡啶分子结的。值得注意的是,吸电子硝基的能级在不同分子间几乎没有变化。由于这一普遍特征,在电极费米能附近形成了共振输运,导致所有衍生物的塞贝克系数和显著提高。例如,塞贝克系数从BDT中的10.8 μV/K提高到二硝基 - BDT(DBDT)中的 - 470 μV/K。此外,硝基导致的相消PI抑制了声子热导,例如,在室温下从BDT中的20 pW/K降至DBDT中的11 pW/K。我们还证明,当在金电极之间放置平行分子时,量子和PI增强的单分子热电效率得以保持。这些结果有望消除关键障碍,并为利用功能化有机分子进行热电能量收集和制冷开辟新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7d2/7011773/b1ed0e3f4d77/jp8b12538_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验