School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China.
Beijing Institute of Nanoenergy & Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China.
Small. 2023 Apr;19(16):e2207487. doi: 10.1002/smll.202207487. Epub 2023 Jan 24.
Benefiting from the proton's small size and ultrahigh mobility in water, aqueous proton batteries are regarded as an attractive candidate for high-power and ultralow-temperature energy storage devices. Herein, a new-type C N polymer with uniform micropores and a large specific surface area is prepared by sulfuric acid-catalyzed ketone amine condensation reaction and employed as the electrode of proton batteries. Multi-walled carbon nanotubes (MWCNT) are introduced to induce the in situ growth of C N, and reaped significantly enhanced porosity and conductivity, and thus better both room- and low-temperature performance. When coupled with MnO @Carbon fiber (MnO @CF) cathode, MnO @CF//C N-50% MWCNT full battery shows unprecedented cycle stability with a capacity retention of 98% after 11 000 cycles at 10 A g and even 100% after 70 000 cycles at 20 A g . Additionally, a novel anti-freezing electrolyte (5 m H SO + 0.5 m MnSO ) is developed and showed a high ionic conductivity of 123.2 mS cm at -70 °C. The resultant MnO @CF//C N-50% MWCNT battery delivers a specific capacity of 110.5 mAh g even at -70 °C at 1 A g , the highest in all reported proton batteries under the same conditions. This work is expected to offer a package solution for constructing high-performance ultralow-temperature aqueous proton batteries.
得益于质子在水中的小尺寸和超高迁移率,水系质子电池被认为是高功率和超低温度储能设备的有吸引力的候选者。在此,通过硫酸催化的酮胺缩合反应制备了具有均匀微孔和大比表面积的新型 C N 聚合物,并将其用作质子电池的电极。引入多壁碳纳米管 (MWCNT) 来诱导 C N 的原位生长,从而显著提高了多孔性和导电性,进而改善了室温性能和低温性能。与 MnO@Carbon fiber (MnO@CF) 阴极结合使用时,MnO@CF//C N-50%MWCNT 全电池在 10 A g 下经过 11 000 次循环后具有前所未有的循环稳定性,容量保持率为 98%,甚至在 20 A g 下经过 70 000 次循环后仍保持 100%。此外,还开发了一种新型防冻电解质(5 m H2SO4+0.5 m MnSO4),在-70°C 时具有 123.2 mS cm 的高离子电导率。所得的 MnO@CF//C N-50%MWCNT 电池在-70°C、1 A g 下的比容量为 110.5 mAh g,在相同条件下是所有报道的质子电池中最高的。这项工作有望为构建高性能超低温度水系质子电池提供一整套解决方案。