Suppr超能文献

复发性胶质母细胞瘤对活化杀伤细胞免疫疗法反应性的预测生物标志物。

Predictive biomarkers for the responsiveness of recurrent glioblastomas to activated killer cell immunotherapy.

作者信息

Hwang Sohyun, Lim Jaejoon, Kang Haeyoun, Jeong Ju-Yeon, Joung Je-Gun, Heo Jinhyung, Jung Daun, Cho Kyunggi, An Hee Jung

机构信息

Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, Korea.

CHA Future Medicine Research Institute, CHA Bundang Medical Center, Seongnam, Korea.

出版信息

Cell Biosci. 2023 Jan 24;13(1):17. doi: 10.1186/s13578-023-00961-4.

Abstract

BACKGROUND

Recurrent glioblastoma multiforme (GBM) is a highly aggressive primary malignant brain tumor that is resistant to existing treatments. Recently, we reported that activated autologous natural killer (NK) cell therapeutics induced a marked increase in survival of some patients with recurrent GBM.

METHODS

To identify biomarkers that predict responsiveness to NK cell therapeutics, we examined immune profiles in tumor tissues using NanoString nCounter analysis and compared the profiles between 5 responders and 7 non-responders. Through a three-step data analysis, we identified three candidate biomarkers (TNFRSF18, TNFSF4, and IL12RB2) and performed validation with qRT-PCR. We also performed immunohistochemistry and a NK cell migration assay to assess the function of these genes.

RESULTS

Responders had higher expression of many immune-signaling genes compared with non-responders, which suggests an immune-active tumor microenvironment in responders. The random forest model that identified TNFRSF18, TNFSF4, and IL12RB2 showed a 100% accuracy (95% CI 73.5-100%) for predicting the response to NK cell therapeutics. The expression levels of these three genes by qRT-PCR were highly correlated with the NanoString levels, with high Pearson's correlation coefficients (0.419 (TNFRSF18), 0.700 (TNFSF4), and 0.502 (IL12RB2)); their prediction performance also showed 100% accuracy (95% CI 73.54-100%) by logistic regression modeling. We also demonstrated that these genes were related to cytotoxic T cell infiltration and NK cell migration in the tumor microenvironment.

CONCLUSION

We identified TNFRSF18, TNFSF4, and IL12RB2 as biomarkers that predict response to NK cell therapeutics in recurrent GBM, which might provide a new treatment strategy for this highly aggressive tumor.

摘要

背景

复发性多形性胶质母细胞瘤(GBM)是一种极具侵袭性的原发性恶性脑肿瘤,对现有治疗具有抗性。最近,我们报道活化的自体自然杀伤(NK)细胞疗法使部分复发性GBM患者的生存期显著延长。

方法

为了鉴定预测NK细胞疗法反应性的生物标志物,我们使用NanoString nCounter分析检测肿瘤组织中的免疫谱,并比较了5名反应者和7名无反应者的免疫谱。通过三步数据分析,我们鉴定出三种候选生物标志物(TNFRSF18、TNFSF4和IL12RB2),并通过qRT-PCR进行验证。我们还进行了免疫组织化学和NK细胞迁移试验以评估这些基因的功能。

结果

与无反应者相比,反应者中许多免疫信号基因的表达更高,这表明反应者中存在免疫活性肿瘤微环境。鉴定出TNFRSF18、TNFSF4和IL12RB2的随机森林模型在预测对NK细胞疗法的反应方面显示出100%的准确率(95%置信区间73.5-100%)。通过qRT-PCR检测的这三个基因的表达水平与NanoString水平高度相关,皮尔逊相关系数较高(TNFRSF18为0.419,TNFSF4为0.700,IL12RB2为0.502);通过逻辑回归建模,它们的预测性能也显示出100%的准确率(95%置信区间73.54-100%)。我们还证明这些基因与肿瘤微环境中的细胞毒性T细胞浸润和NK细胞迁移有关。

结论

我们鉴定出TNFRSF18、TNFSF4和IL12RB2作为预测复发性GBM对NK细胞疗法反应的生物标志物,这可能为这种极具侵袭性的肿瘤提供一种新的治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/653b/9875464/ad30693c0c02/13578_2023_961_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验