文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

静脉注射免疫球蛋白治疗川崎病。

Intravenous immunoglobulin for the treatment of Kawasaki disease.

机构信息

Usher Institute, University of Edinburgh, Edinburgh, UK.

Department of Social Medicine, National Center for Child Health and Development, Tokyo, Japan.

出版信息

Cochrane Database Syst Rev. 2023 Jan 25;1(1):CD014884. doi: 10.1002/14651858.CD014884.pub2.


DOI:10.1002/14651858.CD014884.pub2
PMID:36695415
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9875364/
Abstract

BACKGROUND: Kawasaki disease (KD) is an acute systemic vasculitis (inflammation of the blood vessels) that mainly affects children. Symptoms include fever, chapped lips, strawberry tongue, red eyes (bulbar conjunctival injection), rash, redness, swollen hands and feet or skin peeling; and enlarged cervical lymph nodes. High fevers and systemic inflammation characterise the acute phase. Inflammation of the coronary arteries causes the most serious complication of the disease, coronary artery abnormalities (CAAs). The primary treatment is intravenous immunoglobulin (IVIG) and acetylsalicylic acid (ASA/aspirin), with doses and regimens differing between institutions. It is important to know which regimens are the safest and most effective in preventing complications. OBJECTIVES: To evaluate the efficacy and safety of IVIG in treating and preventing cardiac consequences of Kawasaki disease. SEARCH METHODS: The Cochrane Vascular Information Specialist searched the Cochrane Vascular Specialised Register, CENTRAL, MEDLINE, Embase, and CINAHL databases, and the World Health Organization International Clinical Trials Registry Platform and ClinicalTrials.gov trials registers to 26 April 2022. SELECTION CRITERIA: We included randomised controlled trials (RCTs) investigating the use of IVIG for the treatment of KD. We included studies involving treatment for initial or refractory KD, or both. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. Our primary outcomes were incidence of CAAs and incidence of any adverse effects after treatment. Our secondary outcomes were acute coronary syndromes, duration of fever, need for additional treatment, length of hospital stay, and mortality. We used GRADE to assess the certainty of the evidence for each outcome. MAIN RESULTS: We identified 31 RCTs involving a total of 4609 participants with KD. Studies compared IVIG with ASA, another dose or regimen of IVIG, prednisolone, or infliximab. The majority of studies reported on primary treatment, so those results are reported below. A limited number of studies investigated secondary or tertiary treatment in IVIG-resistant patients. Doses and regimens of IVIG infusion varied between studies, and all studies had some concerns related to risk of bias. Primary treatment with IVIG compared to ASA for people with KD Compared to ASA treatment, IVIG probably reduces the incidence of CAAs in people with KD up to 30 days (odds ratio (OR) 0.60, 95% confidence interval (CI) 0.41 to 0.87; 11 studies, 1437 participants; moderate-certainty evidence). The individual studies reported a range of adverse effects, but there was little to no difference in numbers of adverse effects between treatment groups (OR 0.57, 95% CI 0.17 to 1.89; 10 studies, 1376 participants; very low-certainty evidence). There was limited evidence for the incidence of acute coronary syndromes, so we are uncertain of any effects. Duration of fever days from treatment onset was probably shorter in the IVIG group (mean difference (MD) -4.00 days, 95% CI -5.06 to -2.93; 3 studies, 307 participants; moderate-certainty evidence). There was little or no difference between groups in need for additional treatment (OR 0.27, 95% CI 0.05 to 1.57; 3 studies, 272 participants; low-certainty evidence). No study reported length of hospital stay, and no deaths were reported in either group. Primary treatment with IVIG compared to different infusion regimens of IVIG for people with KD Higher-dose regimens of IVIG probably reduce the incidence of CAAs compared to medium- or lower-dose regimens of IVIG up to 30 days (OR 0.60, 95% CI 0.40 to 0.89; 8 studies, 1824 participants; moderate-certainty evidence). There was little to no difference in the number of adverse effects between groups (OR 1.11, 95% CI 0.52 to 2.37; 6 studies, 1659 participants; low-certainty evidence). No study reported on acute coronary syndromes. Higher-dose IVIG may reduce the duration of fever compared to medium- or lower-dose regimens (MD -0.71 days, 95% CI -1.36 to -0.06; 4 studies, 992 participants; low-certainty evidence). Higher-dose regimens may reduce the need for additional treatment (OR 0.29, 95% CI 0.10 to 0.88; 4 studies, 1125 participants; low-certainty evidence). We did not detect a clear difference in length of hospital stay between infusion regimens (MD -0.24, 95% CI -0.78 to 0.30; 3 studies, 752 participants; low-certainty evidence). One study reported mortality, and there was little to no difference detected between regimens (moderate-certainty evidence). Primary treatment with IVIG compared to prednisolone for people with KD The evidence comparing IVIG with prednisolone on incidence of CAA is very uncertain (OR 0.60, 95% CI 0.24 to 1.48; 2 studies, 140 participants; very low-certainty evidence), and there was little to no difference between groups in adverse effects (OR 4.18, 95% CI 0.19 to 89.48; 1 study; 90 participants; low-certainty evidence). We are very uncertain of the impact on duration of fever, as two studies reported this outcome differently and showed conflicting results. One study reported on acute coronary syndromes and mortality, finding little or no difference between groups (low-certainty evidence). No study reported the need for additional treatment or length of hospital stay. AUTHORS' CONCLUSIONS: The included RCTs investigated a variety of comparisons, and the small number of events observed during the study periods limited detection of effects. The certainty of the evidence ranged from moderate to very low due to concerns related to risk of bias, imprecision, and inconsistency. The available evidence indicated that high-dose IVIG regimens are probably associated with a reduced risk of CAA formation compared to ASA or medium- or low-dose IVIG regimens. There were no clinically significant differences in incidence of adverse effects, which suggests there is little concern about the safety of IVIG. Compared to ASA, high-dose IVIG probably reduced the duration of fever, but there was little or no difference detected in the need for additional treatment. Compared to medium- or low-dose IVIG, there may be reduced duration of fever and reduced need for additional treatment. We were unable to draw any conclusions regarding acute coronary syndromes, mortality, or length of hospital stay, or for the comparison IVIG versus prednisolone. Our findings are in keeping with current guideline recommendations and evidence from long-term epidemiology studies.

摘要

背景:川崎病(KD)是一种主要影响儿童的急性全身性血管炎(血管炎症)。其症状包括发热、唇干裂、草莓舌、眼球(球结膜充血)发红、皮疹、红斑、手脚肿胀或皮肤脱皮;以及颈淋巴结肿大。急性期的特征是高热和全身炎症。冠状动脉炎可导致该病最严重的并发症,即冠状动脉异常(CAA)。主要治疗方法是静脉注射免疫球蛋白(IVIG)和乙酰水杨酸(ASA/阿司匹林),不同机构的剂量和方案有所不同。了解哪种方案在预防并发症方面最安全和最有效是很重要的。

目的:评估 IVIG 在治疗和预防川崎病心脏后果方面的疗效和安全性。

检索方法:Cochrane 血管信息专家检索了 Cochrane 血管专题登记册、CENTRAL、MEDLINE、Embase 和 CINAHL 数据库,以及世界卫生组织国际临床试验注册平台和 ClinicalTrials.gov 试验注册库,截至 2022 年 4 月 26 日。

入选标准:我们纳入了随机对照试验(RCT),这些试验调查了 IVIG 治疗川崎病的用途。我们纳入了治疗初始或难治性 KD 或两者的研究。

数据收集和分析:我们使用了标准的 Cochrane 方法。我们的主要结局是 CAA 的发生率和治疗后任何不良反应的发生率。我们的次要结局是急性冠状动脉综合征、发热持续时间、需要额外治疗、住院时间和死亡率。我们使用 GRADE 评估每个结局的证据确定性。

主要结果:我们确定了 31 项 RCT,共涉及 4609 名 KD 患者。这些研究比较了 IVIG 与 ASA、另一种 IVIG 剂量或方案、泼尼松龙或英夫利昔单抗。大多数研究报告了原发性治疗,因此下面报告了这些结果。少数研究调查了 IVIG 耐药患者的继发性或三级治疗。IVIG 输注的剂量和方案在研究之间存在差异,所有研究都存在与偏倚风险相关的一些担忧。

与 ASA 相比,IVIG 用于治疗 KD 患者

与 ASA 治疗相比,IVIG 可能会降低 KD 患者在 30 天内 CAA 的发生率(比值比(OR)0.60,95%置信区间(CI)0.41 至 0.87;11 项研究,1437 名参与者;中等确定性证据)。个别研究报告了一系列不良反应,但治疗组之间不良反应的数量差异不大(OR 0.57,95%CI 0.17 至 1.89;10 项研究,1376 名参与者;非常低确定性证据)。关于急性冠状动脉综合征的发生率,我们只有有限的证据,因此我们不确定是否存在任何影响。从治疗开始到发热的天数可能会更短(平均差(MD)-4.00 天,95%CI -5.06 至 -2.93;3 项研究,307 名参与者;中等确定性证据)。两组之间需要额外治疗的差异不大(OR 0.27,95%CI 0.05 至 1.57;3 项研究,272 名参与者;低确定性证据)。没有研究报告住院时间,两组均无死亡报告。

与 IVIG 的不同输注方案相比,IVIG 用于治疗 KD 患者

高剂量 IVIG 方案可能会降低与中剂量或低剂量 IVIG 方案相比在 30 天内 CAA 的发生率(OR 0.60,95%CI 0.40 至 0.89;8 项研究,1824 名参与者;中等确定性证据)。两组之间不良反应的数量差异不大(OR 1.11,95%CI 0.52 至 2.37;6 项研究,1659 名参与者;低确定性证据)。没有研究报告急性冠状动脉综合征。高剂量 IVIG 可能会缩短发热时间(MD -0.71 天,95%CI -1.36 至 -0.06;4 项研究,992 名参与者;低确定性证据)。高剂量方案可能会减少需要额外治疗的人数(OR 0.29,95%CI 0.10 至 0.88;4 项研究,1125 名参与者;低确定性证据)。我们没有检测到两种输注方案之间住院时间的明显差异(MD -0.24,95%CI -0.78 至 0.30;3 项研究,752 名参与者;低确定性证据)。一项研究报告了死亡率,并且在方案之间没有检测到差异(中等确定性证据)。

与泼尼松龙相比,IVIG 用于治疗 KD 患者

将 IVIG 与泼尼松龙进行比较的 CAA 发生率的证据非常不确定(OR 0.60,95%CI 0.24 至 1.48;2 项研究,140 名参与者;非常低确定性证据),两组之间不良反应的数量差异不大(OR 4.18,95%CI 0.19 至 89.48;1 项研究;90 名参与者;低确定性证据)。我们对发热持续时间的影响非常不确定,因为两项研究报告了不同的结果,并且结果相互矛盾。一项研究报告了急性冠状动脉综合征和死亡率,发现两组之间几乎没有差异(低确定性证据)。没有研究报告需要额外治疗或住院时间。

作者结论:纳入的 RCT 调查了多种比较,研究期间观察到的事件数量较少,限制了对效果的检测。由于与偏倚风险、不精确性和不一致性相关的担忧,证据的确定性范围从中等到非常低。现有证据表明,与 ASA 或中剂量或低剂量 IVIG 方案相比,高剂量 IVIG 方案可能与 CAA 形成风险降低有关。两组之间不良反应的发生率无显著差异,这表明对 IVIG 的安全性几乎没有担忧。与 ASA 相比,高剂量 IVIG 可能会缩短发热时间,但需要额外治疗的人数差异不大。与中剂量或低剂量 IVIG 相比,可能会缩短发热时间和减少需要额外治疗的人数。我们无法对急性冠状动脉综合征、死亡率或住院时间或 IVIG 与泼尼松龙的比较得出任何结论。我们的研究结果与当前指南建议和长期流行病学研究证据一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/f1babb81559f/tCD014884-CMP-004.03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/f16cca464c00/nCD014884-FIG-01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/12446d4a6bf6/tCD014884-FIG-02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/877f0cd94876/tCD014884-FIG-03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/62142a38327b/nCD014884-FIG-04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/afee4280e7d3/tCD014884-CMP-001.01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/63c7c680a5aa/tCD014884-CMP-001.02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/feed329f7809/tCD014884-CMP-001.03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/853a7a69f478/tCD014884-CMP-001.04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/b953a66f380b/tCD014884-CMP-001.05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/2750c94097b6/tCD014884-CMP-001.06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/4498367594ad/tCD014884-CMP-002.01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/438a79f813fa/tCD014884-CMP-002.02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/a7816abb6fff/tCD014884-CMP-002.03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/68e7314166ba/tCD014884-CMP-002.04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/dd3984b80d6e/tCD014884-CMP-002.05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/855b9cdb1b37/tCD014884-CMP-002.06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/3b5e01bbbe15/tCD014884-CMP-002.07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/480f7737c1d8/tCD014884-CMP-002.08.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/2d10fc5e775e/tCD014884-CMP-002.09.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/22cd6746d62c/tCD014884-CMP-002.10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/a25abcca5b55/tCD014884-CMP-002.11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/e8879b79e4ad/tCD014884-CMP-002.12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/3541b504b6ba/tCD014884-CMP-002.13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/76a1e4c39939/tCD014884-CMP-002.14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/5571d150064d/tCD014884-CMP-002.15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/10cc749a0ce8/tCD014884-CMP-002.16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/f44d8cece90e/tCD014884-CMP-002.17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/e42f7d7c322f/tCD014884-CMP-002.18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/8c3f953af707/tCD014884-CMP-002.19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/77d5106cf43c/tCD014884-CMP-003.01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/7afcace51d6e/tCD014884-CMP-003.02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/f3a8a784aa0b/tCD014884-CMP-003.03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/30a6d21ed10f/tCD014884-CMP-004.01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/f1babb81559f/tCD014884-CMP-004.03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/f16cca464c00/nCD014884-FIG-01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/12446d4a6bf6/tCD014884-FIG-02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/877f0cd94876/tCD014884-FIG-03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/62142a38327b/nCD014884-FIG-04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/afee4280e7d3/tCD014884-CMP-001.01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/63c7c680a5aa/tCD014884-CMP-001.02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/feed329f7809/tCD014884-CMP-001.03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/853a7a69f478/tCD014884-CMP-001.04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/b953a66f380b/tCD014884-CMP-001.05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/2750c94097b6/tCD014884-CMP-001.06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/4498367594ad/tCD014884-CMP-002.01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/438a79f813fa/tCD014884-CMP-002.02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/a7816abb6fff/tCD014884-CMP-002.03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/68e7314166ba/tCD014884-CMP-002.04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/dd3984b80d6e/tCD014884-CMP-002.05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/855b9cdb1b37/tCD014884-CMP-002.06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/3b5e01bbbe15/tCD014884-CMP-002.07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/480f7737c1d8/tCD014884-CMP-002.08.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/2d10fc5e775e/tCD014884-CMP-002.09.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/22cd6746d62c/tCD014884-CMP-002.10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/a25abcca5b55/tCD014884-CMP-002.11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/e8879b79e4ad/tCD014884-CMP-002.12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/3541b504b6ba/tCD014884-CMP-002.13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/76a1e4c39939/tCD014884-CMP-002.14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/5571d150064d/tCD014884-CMP-002.15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/10cc749a0ce8/tCD014884-CMP-002.16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/f44d8cece90e/tCD014884-CMP-002.17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/e42f7d7c322f/tCD014884-CMP-002.18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/8c3f953af707/tCD014884-CMP-002.19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/77d5106cf43c/tCD014884-CMP-003.01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/7afcace51d6e/tCD014884-CMP-003.02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/f3a8a784aa0b/tCD014884-CMP-003.03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/30a6d21ed10f/tCD014884-CMP-004.01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80f0/9875364/f1babb81559f/tCD014884-CMP-004.03.jpg

相似文献

[1]
Intravenous immunoglobulin for the treatment of Kawasaki disease.

Cochrane Database Syst Rev. 2023-1-25

[2]
Systemic interventions for treatment of Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), and SJS/TEN overlap syndrome.

Cochrane Database Syst Rev. 2022-3-11

[3]
Drugs for preventing postoperative nausea and vomiting in adults after general anaesthesia: a network meta-analysis.

Cochrane Database Syst Rev. 2020-10-19

[4]
Non-pharmacological interventions for preventing delirium in hospitalised non-ICU patients.

Cochrane Database Syst Rev. 2021-7-19

[5]
Non-pharmacological interventions for preventing delirium in hospitalised non-ICU patients.

Cochrane Database Syst Rev. 2021-11-26

[6]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2017-12-22

[7]
Treatments for chronic inflammatory demyelinating polyradiculoneuropathy (CIDP): an overview of systematic reviews.

Cochrane Database Syst Rev. 2017-1-13

[8]
Antiseptics for burns.

Cochrane Database Syst Rev. 2017-7-12

[9]
Different corticosteroids and regimens for accelerating fetal lung maturation for babies at risk of preterm birth.

Cochrane Database Syst Rev. 2022-8-9

[10]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2020-1-9

引用本文的文献

[1]
Concurrent Coxsackievirus A6 Infection and Kawasaki Disease: A Case Report.

Reports (MDPI). 2024-11-15

[2]
An infant with IVIG-resistant Kawasaki disease requiring repeated glucocorticoids therapy: A case report and literature review.

Medicine (Baltimore). 2025-5-23

[3]
Effect of additional intravenous immunoglobulin for infliximab-refractory Kawasaki disease: a cohort study.

Pediatr Rheumatol Online J. 2025-5-13

[4]
The Comparative Effectiveness of Intravenous Immunoglobulin and Corticosteroids in Kawasaki Disease: A Nationwide Claim Data Analysis.

J Clin Med. 2025-3-16

[5]
Treatment and Monitoring of Eosinophilic Fasciitis.

Curr Treatm Opt Rheumatol. 2025

[6]
Pharmacoeconomic Analysis and Considerations for the Management of Kawasaki Disease in the Arab Countries-A Multinational, Multi-Institutional Project of the Kawasaki Disease Arab Initiative (Kawarabi) (A Project Methodology Paper).

Turk Arch Pediatr. 2025-3-3

[7]
Machine learning for early diagnosis of Kawasaki disease in acute febrile children: retrospective cross-sectional study in China.

Sci Rep. 2025-2-25

[8]
Impact of intravenous immunoglobulin treatment on peripheral blood cells in children with Kawasaki disease complicated with coronary artery lesion.

Ital J Pediatr. 2025-2-11

[9]
A Nomogram Model for Predicting Recurrent Coronary Thrombosis in Kawasaki Disease Patients.

J Inflamm Res. 2025-1-3

[10]
Utilizing T-Lymphocyte Activation-Related Cytokines to Predict Non-Responsiveness to Treatment in Pediatric Kawasaki Disease.

Pediatric Health Med Ther. 2024-12-17

本文引用的文献

[1]
Corticosteroids for the treatment of Kawasaki disease in children.

Cochrane Database Syst Rev. 2022-5-27

[2]
Effects of immunoglobulin plus prednisolone in reducing coronary artery lesions in patients with Kawasaki disease: study protocol for a phase III multicenter, open-label, blinded-endpoints randomized controlled trial.

Trials. 2021-12-11

[3]
Infliximab versus second intravenous immunoglobulin for treatment of resistant Kawasaki disease in the USA (KIDCARE): a randomised, multicentre comparative effectiveness trial.

Lancet Child Adolesc Health. 2021-12

[4]
Efficacy and safety associated with the infusion speed of intravenous immunoglobulin for the treatment of Kawasaki disease: a randomized controlled trial.

Pediatr Rheumatol Online J. 2021-7-3

[5]
Evaluation of high-dose aspirin elimination in the treatment of Kawasaki disease in the incidence of coronary artery aneurysm.

Ann Pediatr Cardiol. 2021

[6]
Randomized trial of different initial intravenous immunoglobulin regimens in Kawasaki disease.

Pediatr Int. 2021-7

[7]
Methylprednisolone Pulse Therapy or Additional IVIG for Patients with IVIG-Resistant Kawasaki Disease.

J Immunol Res. 2020

[8]
Revision of diagnostic guidelines for Kawasaki disease (6th revised edition).

Pediatr Int. 2020-10

[9]
Current pharmacological intervention and development of targeting IVIG resistance in Kawasaki disease.

Curr Opin Pharmacol. 2020-10

[10]
Kawasaki Disease: an Update.

Curr Rheumatol Rep. 2020-9-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索