文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用神经网络的单加速度计识别人类活动

Single Accelerometer to Recognize Human Activities Using Neural Networks.

作者信息

Vakacherla Sai Siddarth, Kantharaju Prakyath, Mevada Meet, Kim Myunghee

机构信息

Rehabilitation Robotics Laboratory, Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607.

出版信息

J Biomech Eng. 2023 Jun 1;145(6). doi: 10.1115/1.4056767.


DOI:10.1115/1.4056767
PMID:36695756
Abstract

Exoskeletons have decreased physical effort and increased comfort in activities of daily living (ADL) such as walking, squatting, and running. However, this assistance is often activity specific and does not accommodate a wide variety of different activities. To overcome this limitation and increase the scope of exoskeleton application, an automatic human activity recognition (HAR) system is necessary. We developed two deep-learning models for HAR using one-dimensional-convolutional neural network (CNN) and a hybrid model using CNNs and long-short term memory (LSTM). We trained both models using the data collected from a single three-axis accelerometer placed on the chest of ten subjects. We were able to classify five different activities, standing, walking on level ground, walking on an incline, running, and squatting, with an accuracy of 98.1% and 97.8%, respectively. A two subject real-time validation trial was also conducted to validate the real-time applicability of the system. The real-time accuracy was measured at 96.6% and 97.2% for the CNN and the hybrid model, respectively. The high classification accuracy in the test and real-time evaluation suggests that a single sensor could distinguish human activities using machine-learning-based models.

摘要

外骨骼已减少了日常生活活动(ADL)(如行走、下蹲和跑步)中的体力消耗并提高了舒适度。然而,这种辅助通常是针对特定活动的,无法适应多种不同活动。为克服这一局限性并扩大外骨骼的应用范围,需要一个自动人体活动识别(HAR)系统。我们使用一维卷积神经网络(CNN)开发了两种用于HAR的深度学习模型,以及一种使用CNN和长短期记忆(LSTM)的混合模型。我们使用从放置在十名受试者胸部的单个三轴加速度计收集的数据对这两种模型进行了训练。我们能够分别以98.1%和97.8%的准确率对站立、在平地上行走、在斜坡上行走、跑步和下蹲这五种不同活动进行分类。还进行了一项双受试者实时验证试验,以验证该系统的实时适用性。对于CNN和混合模型,实时准确率分别测得为96.6%和97.2%。测试和实时评估中的高分类准确率表明,单个传感器可以使用基于机器学习的模型来区分人类活动。

相似文献

[1]
Single Accelerometer to Recognize Human Activities Using Neural Networks.

J Biomech Eng. 2023-6-1

[2]
Machine learning algorithms can classify outdoor terrain types during running using accelerometry data.

Gait Posture. 2019-9-5

[3]
Human Activity Recognition via Hybrid Deep Learning Based Model.

Sensors (Basel). 2022-1-1

[4]
Deep Learning-Based Human Activity Real-Time Recognition for Pedestrian Navigation.

Sensors (Basel). 2020-4-30

[5]
Exploring Orientation Invariant Heuristic Features with Variant Window Length of 1D-CNN-LSTM in Human Activity Recognition.

Biosensors (Basel). 2022-7-21

[6]
IMU-Based Fitness Activity Recognition Using CNNs for Time Series Classification.

Sensors (Basel). 2024-1-23

[7]
Prediction of activity type in preschool children using machine learning techniques.

J Sci Med Sport. 2015-7

[8]
Coarse-Fine Convolutional Deep-Learning Strategy for Human Activity Recognition.

Sensors (Basel). 2019-3-31

[9]
Human Activity Recognition: Review, Taxonomy and Open Challenges.

Sensors (Basel). 2022-8-27

[10]
Accelerometer-Based Human Activity Recognition for Patient Monitoring Using a Deep Neural Network.

Sensors (Basel). 2020-11-10

引用本文的文献

[1]
A Review on Assisted Living Using Wearable Devices.

Sensors (Basel). 2024-11-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索